Midterm 1
Preparation 2

Lists, Strings, and Files

Strings

e Strings are immutable

e Strings cannot be changed, but we can build new
strings from old ones

e Because building strings as strings is expensive, we
should get used to building strings as lists, and then
convert in one step to strings

String Modification Pattern

e A function that takes a string and then returns the same

string with all instances of ‘a’ preceded and followed by
an underscore

e Example:
® ‘Amazonas Territory’ becomes

' Ama zon a s Territory'

String Modification Pattern

e Solution:

Define an empty list to

def undera(string) : :
contain the components

result = []
for letter in string: \Of s Rl el
1f letter == 'a':
result.append('_a_ ') Go through the argument
elif letter == 'A': string character by
result.append('_A ") character
else: \sij\
result.append(letter)
return "".join (result) Build the result

component by component

Use the “”.join() in order
to return a string instead
of a list

String Processing

e \We can make use of the numerous methods for
programming tasks involving strings and list

e The keyword “in” can be used to test membership
e Test whether an “at” character is in a string:

def test emall (string):
return '@' 1n string

e By the way, this is not a very exhaustive test for a
string being an email address

String Processing

e Testing whether a string is an IPv4 (Internet Protocol
version 4) address

e |Pv4 addresses consists of four fields separated by
periods

e Each field has to be a number between 0 and 256.

String Processing

e Testing whether a string is an IPv4 address

* First we break the string apart around periods to obtain
the four fields

* |f we do not get four fields, it is not an IPv4 address

* \We then test whether the four fields are integers. If not,
its not an IPv4 address

e \We then test whether the numbers are smaller than O or
larger than 256. If it is, then it is not an IPv4 address

* Now the string has passed all tests and we can certify
that it is an IPv4 address

String Processing

e We develop the program step by step

def test 1pv4d (string):
Here we test for all reasons that

the string i1s not an IP address
return True

e \We check for reasons to return False

e |f we cannot find a reason, we return True

String Processing

e We develop the program step by step

def test 1pv4d (string):
fields = string.split('.")
1f len(fields) !=4:
return False
more tests
return True

e We use strip with *.” as the separator

e \We then check for the number of fields

String Processing

e We develop the program step by step

def test 1pv4d (string):
fields = string.split('.")
1f len(fields) !=4:
return False
for field in fields:
1f not field.isdigit() :
return False
return True

e \We tests whether all fields consist of digits

String Processing

* We develop the program step by step

def test 1pv4d (string):
fields = string.split('.")
1f len(fields) !=4:
return False
for field in fields:
1f not field.isdigit () :
return False
else:
number=int (field)
1f number < 0 or number > 256:
return False
return True

e |f all fields are digits, we convert the field to an integer
and check whether it is between 0 and 256.

Files

To access files, we need to open and close the files.

The standard way is the with-construct that automatically
closes the file

We open the file in read (default) or write mode

There is also a distinction between text (default) and
binary.

To open a file for reading, we just use

e with open (“/Users/thomasschwarz/
Documents/test.txt”) as infi:

Files

e Here we process a text file that contains potential IPv4
addresses

def process file(filename):
with open(filename) as infi:
for line 1in infi:
string = line.strip ()
print ("{:20s} {:6s}”.format (
string, str(test 1pv4(string))))

e |t is important to strip the line. 1888

234.23.a67.5.23
25.31.109.23
356.21.2.5
0.3.a5.6.7

