
Classes 3
Marquette University



Address Class
• How to generate addresses


• Each country has its own way of generating addresses


• An address consists of 


• an optional modifier (apartment, floor, neighborhood)


• a street


• a street number


• a city 


• a state (in most of the Americas)


• a country



Address Class
• To deal with optional arguments:


• Use a default argument of none

def __init__(self, country,  city, street, number,  
             postal,    state, apartment = None):



Aside: How to deal with 
long lines in Python

• Python statements ideally fit in a single line


• In fact, if you want to write poorly readable code, you can 
put more than one statement in a line and separate with a 
semi-colon (  ;  )


• Python still allows to use a single forward slash as a 
continuation marker


• But this is not very readable


• Put expressions into parentheses (unless they already 
come with parentheses)


• Python interpreter will interpret correctly



The purpose of str and repr
• The dunder methods __str__ and __repr__ seem to do the 

same thing, 


• But:


• __str__ is called by print with priority over __repr__


• This is how you want your output be displayed


• __repr__ should represent the internal structure of 
your class instances



Addresses
• We can use __repr__ to just give us the internal makeup 

of an Address instance
 def __repr__(self): 
        return "apartment: {0}\nstreet: {1}\nnumber: {2}\ncity: {3}\npostal: {4}\nstate: {5}, \ncountry: {6}".format( 
            self.apartment, self.street, self.number, self.city, self.postal, self.state, self.country) 



Addresses
• But for __str__, we will let the country code determine 

what to do.


• The code is ugly, but that is the price for 
internationalization


• And we have not even discussed how to be able to use 
non-English keyboard letters in Python



Self Test
• Open up the file address.py


• Edit the __str__ dunder method to allow for US 
addresses



Addresses
• When we use str(my_address) on an Address object, we 

get the result of __str__


• When we use repr(my_address), we get the result of 
__repr__



Instances can be fields of 
classes

• When we model processes (such as business processes), 
we will build up our entities from simpler entities


• We can have a has-a relationship


• For example, each person has an address


• (With many sad exceptions: some have none, some 
have more than one)



Modular programming
• Remember modules:


• They are just py-files


• They are imported using import statements


• The form of the import statements determines how the names are 
being resolved


• import address 

• imports the module, names are prefixed with “address.”


• from address import * 

• Not recommended, just use names without prefix


• from address import Address 

• Just as before, but only imports the class Address



Client Example
• Clients have a name and an address

import address 

class Client: 
    def __init__(self, name, address): 
        self.name = name 
        self.address = address 
    def __str__(self): 
        return "{}\n{}".format(self.name, str(self.address)) 
    def __repr__(self): 
        return "Name: {}\n {}".format(self.name, repr(self.address)) 

if __name__=="__main__": 
    address4 = address.Address("Canada", "Ottawa", "Wellington Street",  
                       80, "ON K1A 0A2", "Ontario", 
                       "Office of the Prime Minister") 
    trudy = Client("The Honorable Justin Trudeau", address4) 
    print(trudy) 


