
Classes 4
Thomas Schwarz, SJ

Marquette University



Doc Strings
• Classes are reusable


• No need to reinvent a working name class


• But need to provide documentation


• In Python:


• This is done primarily with the so-called doc string


• Right after the definition of a class or function


• Included between triple quotes



Doc Strings
• The contents are made available to the help function



Example
• A simple checking account class

class Checking_Account: 
    """A class that models a checking account. 
        Attributes: a name -- string in this implementation 
        Balance: a balance in cents 
    """ 
    def __init__(self, name, balance): 
        """Constructor. name is a string. balance is a floating point or integer.""" 
        self.name = name 
        self.balance = round(balance*100) 
    def __str__(self): 
        """Returns balance as dollars and cents""" 
        return "Account for {} with balance US${:d}.{:02d}".format( 
            self.name, 
            self.balance//100, 
            self.balance%100) 
    def transfer(act1, act2, amount): 
        """transfers amount (floating pt) in dollars from act1 to act2""" 
        amount = round(amount*100) 
        act1.balance -= amount 
        act2.balance += amount



Example
if __name__ == "__main__": 
    a1 = Checking_Account("Thomas Schwarz", 1543.285) 
    a2 = Checking_Account("Joseph Cuelho", 1009) 
    print(a1) 
    print(a2) 
    print("Transferring") 
    Checking_Account.transfer(a1, a2, 500.01) 
    print(a1) 
    print(a2)



Example
• This is the result of typing help(Checking_Account)



Example
• As you can see, Python has automatically created a help 

file from the information you provided.



Tricks with Currency 
Amounts

• Currency is usually a decimal number with exactly two 
digits precision.


• Could use the decimal - class


• Could use third party classes


• We build our own


• Idea: Present currency as multiples of cents.



class Checking_Account: 
    """A class that models a checking account. 
        Attributes: a name -- string in this implementation 
        Balance: a balance in cents 
    """ 
    def __init__(self, name, balance): 
        """Constructor. name is a string. balance is a  
           floating point or integer. 
        “"" 
        self.name = name 
        self.balance = round(balance*100)



Tricks with Currency 
Accounts

• To print out currencies, we break the cents apart into the 
dollars (displayed normally) and the cents amount proper.


• The format mini-language allow us to print out amounts 
with leading 0.


• Just stick a 0 in front of the width field

    def __str__(self): 
        """Returns balance as dollars and cents""" 
        return "Account for {} with balance US${:d}.{:02d}".format( 
            self.name, 
            self.balance//100, 
            self.balance%100)

Specify leading zero in the 
format mini-language



Self Test
• Modify the __str__ function so that a negative amount is 

written in the form 


•   -US$103.05



Solution
• Just make a case distinction, but make sure that you do 

not change the field
    def __str__(self): 
        """Returns balance as dollars and cents""" 
        if self.balance >= 0: 
            return "Account for {} with balance US${:d}.{:02d}".format( 
                self.name, 
                self.balance//100, 
                self.balance%100) 
        else: 
            balance = -self.balance 
            return "Account for {} with balance -US${:d}.{:02d}".format( 
                self.name, 
                balance//100, 
                balance%100)


