
Python: Functions
Thomas Schwarz, SJ

Marquette University

History
• Early computer programming was difficult

• Not only because interacting with the computer was
difficult

• Data was entered by setting switches, using
punched tapes or cards, electromagnetic tapes, etc

• But also interaction was at the machine level

• Earliest instructions were in binary

History
• Assembler were invented to translate human readable

instructions into machine language

• Only later were “higher level programming languages”
developed such as Fortran (for FORmula TRANslator) and
Cobol (COmmon Business Language)

History
• Some tasks were also repetitive

• Such as calculating the sine of a number

• The necessity to calculate sine gave rise to the first procedure

• The procedure expect its input at a certain location

• It writes it output at another certain location

• It consists of a block of lines of code

• Procedure calling works like this:

• The caller loads the input locations with the data

• It also stores the address of the next instruction at a well-known location, the return
address

• Program control jumps to the beginning of the procedure

• The procedure executes and loads its results in the output locations

• The procedure then jumps to the return address

• The caller finds the result at a certain location

History
• Besides the capability to re-use code, sub-procedures

were also an important tool to break a complicated task
into smaller pieces

• This is called modularization

• It’s been a main-stay in software engineering ever since

Python Functions
• Python almost completely uses the abstraction of a

function

• A function is called from the caller, given none or a
number of arguments (aka parameters)

• The function returns to the caller

• Giving a return value (a fruitful function)

• Or just returning

Python Function
• Calling fruitless functions

• We already have used a fruitless function, namely
print

• print is special, it can have any number of
arguments

• Example: print(“The value is”, 3.145)

• Two arguments

• String “The value is”

• Floating point 3.145

Python Functions
• We can use built-in fruitful functions

• abs returns the absolute value

• We can import the module math in order to have
access to many mathematical functions

• A complete list is in the Python Docs.

• Here we just print out the values of some
functions.

Python Functions
• Creating functions

• Uses key word def

• Followed by the name of the function (usually lower-letter)

• In parentheses, a list of arguments (aka parameters)
separated by comma

• Followed by colon

def function_name :

Statement Block
Indent

()parameter_list

Python Functions
• Example for a fruitless function

• Function that prints out n asterisks, then a blank line, then n
asterisks

• There is a single argument, n

• Note that n does not have a specified type.

• Since in the body of the function, we multiply with n, it
better be an integer.

def asterisks(n):
 print(n*"*")
 print()
 print(n*"*")

Python Functions
• Example for a fruitless function

• Function that prints out n asterisks, then a blank line, then n
asterisks

• Three statements follow in the function block.

• The function execution finishes, when we fall out of the block

• If we want to be explicit, we can add a final line to the
function block with the single statement return

def asterisks(n):
 print(n*"*")
 print()
 print(n*"*")

Python Function
• Example for a fruitful function

• A function that given x and y, calculates the expression

• The function needs two arguments and needs to return
a value

|x − y |
x2 + y2

Python Functions

• There are now two arguments, separated by a comma

• The body of the function calculates the result

• The result is returned with the return-statement.

• An exception will be thrown if we call the function with values 0 and
0 since we then divide by zero in the calculation of the function.

x, y →
|x − y |
x2 + y2

def fun(x, y):
 enumerator = abs(x-y)
 denominator = x*x+y*y
 return enumerator/denominator

Python Functions
• We can have more than one return statement

• An implementation of the maximum of two numbers
function

• I do not need to put the last line in an else, since if x<y,
then I already jumped out of the execution of the
function body.

def my_max(x,y):
 if x<y:
 return y
 return x

