Activities: Functions

May 15, 2020
(1) Create a function that calculates the n-th harmonic number harmonic (n). Have your function check that the argument n is positive.
(2) Write a function that takes a number between 1 and 100 and returns an American style letter grade: 'A' for numbers ≥ 90, ' B ' for numbers, ' C ' for numbers ≥ 65, 'D' for numbers ≥ 55 and 'F' else.
(3) Write a function num_der (function, delta $=0.000001$) that takes a function and calculates its numerical derivative using the symmetric difference formula
$\frac{d f}{d x}=\frac{f(x+\delta)-f(x-\delta)}{2 \cdot \delta}$. Notice that we gave delta a default value that can be overwritten by the user of the function. Then try out the function on math.sin and math.cos.
(4) Write a recursive function fibonacci (n) that strictly uses the following definition:
fibonacci $(n)=\left\{\begin{array}{ll}n & \text { if } n \leq 1 \\ \text { fibonacci }(n-1)+\operatorname{fibonacci}(n-2) & \text { otherwise }\end{array}\right.$.
(a) Try this function out for $n=0, n=1, n=2, n=3, n=4, n=20, n=25, n=30 \ldots$ Around 35, the execution will be really slow because of the number of recursive calls.
(b) Import the Iru_cache decorator from the built-in module func_tools: from func_tools import lru_cache. Then use the decorator @lru_cache (maxsize = None) on your function. Compare the behavior.
(c) Next week, we are going to build our own decorator and also use a much more efficient way of implementing the Fibonacci number.

