Support Vector Machines

Thomas Schwarz

Introduction

- Recall Decision Trees
- Use the features in order to make recursively decisions
- End up with a classification

Introduction

- Decision trees are a type of supervised learning
- Limited by using only a single feature for each decision

Introduction

- KNN - k nearest neighbors
- Supervised learning
- to classify a feature point:
- we look at all elements in the training set
- Drawback: Not scalable if training set is large

Introduction

- SVM:
- Uses any hyperplane to separate sets
 parallel to axes

SVM boundaries can be any hyper-planes

Introduction

- SVM:
- Can encode the hyper-plane using a few data points:
- The support vectors

Introduction

- SVM:
- Can solve classification even if the data set is not linearly separable

Introduction

- Use a (non-linear transform of the data)
- Kernel function: $(x, y) \mapsto\left(x,(x-2)^{2}+(y-2)^{2}\right)$

Mathematics of SVM

- Hyper-plane through the origin is an $n-1$-dimensional subspace of \mathbb{R}^{n}
- $H=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{c} \cdot \mathbf{x}=0\right\}$
- \mathbf{c} is a "normal" vector, usually of length 1
- Dot is the dot product
- Can also use the matrix product
- $H=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{c}^{t} \cdot \mathbf{x}\right\}$

Mathematics

$$
H=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{c} \cdot \mathbf{x}=0\right\}
$$

Hyperplane defined by normal vector (2,3,1) through the point $(1,1,0)$?

Mathematics

- Task: Find $H_{\mathbf{c}, \mathbf{p}}$
- Orthogonal to vector \mathbf{c}
- Passing through a point \mathbf{p}

Mathematics

- $\mathbf{x} \in H_{\mathbf{c}, \mathbf{p}}$
- if and only if $(\mathbf{x}-\mathbf{p})$ is orthogonal to \mathbf{c}
- $(\mathbf{x}-\mathbf{p}) \cdot \mathbf{c}=0$

Mathematics

- Hyperplane given by

$$
\text { - } \quad \begin{aligned}
H_{\mathbf{c}, \mathbf{p}} & =\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{x} \cdot \mathbf{c}-\mathbf{c} \cdot \mathbf{p}=0\right\} \\
& =\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{x} \cdot \mathbf{c}+b=0\right\}
\end{aligned}
$$

- Defined by a linear functional $\lambda: \mathbb{R}^{n} \longrightarrow \mathbb{R}$
- $H_{\mathbf{c}, \mathbf{p}}=\left\{\left(\mathbf{x} \in \mathbb{R}^{n} \mid \lambda(\mathbf{x})=b\right\}\right.$

Mathematics

- Hyperplane separates space into two halves:
- $H_{\mathbf{c}, \mathbf{p}}^{-}=\left\{\left(\mathbf{x} \in \mathbb{R}^{n} \mid \lambda(\mathbf{x})+b<0\right\}\right.$
- $H_{\mathbf{c}, \mathbf{p}}^{+}=\left\{\left(\mathbf{x} \in \mathbb{R}^{n} \mid \lambda(\mathbf{x})+b>0\right\}\right.$

Mathematics

- Learning task:
- Find a hyperplane such that
- All feature vectors of one category are in $H_{\mathbf{c}, \mathbf{p}}^{-}$
- All feature vectors of the other category are in $H_{\mathbf{c}, \mathbf{p}}^{+}$
- The best hyperplane
- (and most likely to achieve good results)
- Maximizes distance of feature vectors from the plane

Mathematics

- How do we determine the distance of a point from the hyper-plane?
- Distance is length of a line between point and closest point on the hyperplane
- This line needs to be orthogonal to the hyperplane
- (Otherwise can find something closer

Mathematics

Mathematics

Distance of a point from a hyperplane is the length of a normal of the hyperplane through the point.

Mathematics

- Let \mathbf{x} be a point on the hyperplane
- Hyperplane defined by

$$
H_{\mathbf{w}, b}=\left\{\left(\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{w} \cdot \mathbf{x}+b=0\right\}\right.
$$

- Write
- $\mathbf{x}-\mathbf{p}=\alpha \mathbf{w}+\beta \mathbf{v}$, with $\mathbf{w} \cdot \mathbf{v}=0$
- Multiply with \mathbf{w}
- $\mathbf{w} \cdot(\mathbf{x}-\mathbf{p})=\alpha \mathbf{w} \cdot \mathbf{w}+\beta \mathbf{w} \cdot \mathbf{v}=\alpha$ since $\mathbf{w} \cdot \mathbf{w}=|\mathbf{w}|^{2}=1$

Mathematics

- Therefore
- Projection of $\mathbf{x}-\mathbf{p}$ on normal \mathbf{w} is $\mathbf{w} \cdot(\mathbf{x}-\mathbf{p})$.
- This is the distance between \mathbf{p} and the hyperplane:

$$
\begin{aligned}
& \operatorname{dist}\left(\mathbf{p}, H_{\mathbf{w}, b}\right)=|\alpha|=|\mathbf{w} \cdot(\mathbf{x}-\mathbf{p})| \\
& \quad=|\mathbf{w} \cdot \mathbf{x}-\mathbf{w} \cdot \mathbf{p}|=|-b-\mathbf{w} \cdot \mathbf{p}|=|b+\mathbf{w} \cdot \mathbf{p}|
\end{aligned}
$$

Mathematics

- Summary:
- Want all the feature vectors of first category in
- $H_{\mathbf{w}, b}^{-}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{w} \cdot \mathbf{x}+b<0\right\}$
- Want all the feature vectors of the second category in
- $H_{\mathbf{w}, b}^{+}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{w} \cdot \mathbf{x}+b>0\right\}$

Mathematics

- First category gets label -1 , second category gets label +1
- Condition becomes:
- label $\left(\mathbf{x}_{i}\right)\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)>0$
- In addition:
- $\min _{i \in I}\left\{\operatorname{label}\left(\mathbf{x}_{i}\right)\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)\right\} \rightarrow \max$ $i \in I$
- where we maximize over all normals \mathbf{w} of length 1 and all scalars b
- All data points $\left\{\mathbf{x}_{i} \mid i \in I\right\}$ contribute to the optimization

Mathematics

- Allow normals to have length other than 1
- Replace b with $|\mathbf{w}| b$
- Optimization becomes
- $\quad \min \left\{\operatorname{label}\left(\mathbf{x}_{i}\right)\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right) /|\mathbf{w}|\right\} \rightarrow \max$ $i \in I$
- The points \mathbf{x}_{i} where the minima are attained are called the support vectors.

Mathematics

Mathematics

- This even works if the two categories are not linearly separable

Mathematics

- Problem: $\min _{i \in I}\left\{\frac{\operatorname{label}\left(\mathbf{x}_{i}\right)\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)}{|\mathbf{w}|}\right\} \rightarrow \max$
- Support vectors: label $(\mathbf{x})(\mathbf{w} \cdot \mathbf{x}+b) /|\mathbf{w}|$ is minimum
- Can multiply \mathbf{w} and b with a scalar
- Set scalar to $s=(\operatorname{label}(\mathbf{x})(\mathbf{w} \cdot \mathbf{x}+b))^{-1}$
- Then:
- $(\operatorname{label}(\mathbf{x})(\mathbf{w} \cdot \mathbf{x}+b))=1$
- Distance of \mathbf{x} to hyperplane is $1 /|\mathbf{w}|$
- All other feature vectors: $\operatorname{label}(\mathbf{x})(\mathbf{w} \cdot \mathbf{x}+b) \geq 1$

Mathematics

- Can now reformulate optimization problem

$$
\begin{aligned}
& \min _{\mathbf{w}, b}\left\{\frac{|\mathbf{w}|^{2}}{2}\right\} \rightarrow \min \\
& \quad \text { subject to } \\
& \forall i \in I: \operatorname{label}\left(\mathbf{x}_{i}\right)\left(\mathbf{w} \mathbf{x}_{i}+b\right) \geq 1
\end{aligned}
$$

Mathematics

- Solve with Lagrange multiplier, traditionally called α
- Solve subject to constraints
- $\forall i \in I: \alpha_{i}\left(\operatorname{label}\left(\mathbf{x}_{i}\right)\left(\mathbf{w} \mathbf{x}_{i}+b\right)-1\right)=0, \alpha_{i} \geq 0$.
- $L=\frac{|\mathbf{w}|^{2}}{2}-\sum_{i \in I} \alpha_{i}\left(\operatorname{label}\left(\mathbf{x}_{i}\right)\left(\mathbf{w} \mathbf{x}_{i}+b\right)-1\right) \rightarrow \min$

Mathematics

- Take partial derivatives with respect to \mathbf{w} and b
- Since $\frac{\delta}{\delta w_{i}}\left(\frac{1}{2} \sum_{i=1}^{n} w_{i}^{2}\right)=w_{i}$
- We obtain

$$
\begin{aligned}
\frac{\delta}{\delta \mathbf{w}} L & =\mathbf{w}-\sum_{i=1}^{n} \alpha_{i} \operatorname{label}\left(\mathbf{x}_{i}\right) \mathbf{x}_{i} \\
\frac{\delta}{\delta b} L & =\sum_{i=1}^{n} \alpha_{i} \operatorname{label}\left(\mathbf{x}_{i}\right)
\end{aligned}
$$

Mathematics

- Setting them to zero for the minimum, we get

$$
\mathbf{w}=\sum_{i=1}^{n} \alpha_{i} \operatorname{label}\left(\mathbf{x}_{i}\right) \mathbf{x}_{i}
$$

Mathematics

- $\mathbf{w}=\sum_{i=1}^{n} \alpha_{i} \operatorname{abal}\left(\mathbf{x}_{i}\right) \mathbf{x}_{i}$ implies
- \mathbf{w} is a linear combination of features

Mathematics

- Use $\frac{|\mathbf{w}|^{2}}{2}=\frac{\mathbf{w} \cdot \mathbf{w}}{2}$ in our optimization problem
- $L=\frac{|\mathbf{w}|^{2}}{2}-\sum_{i \in I} \alpha_{i}\left(\operatorname{label}\left(\mathbf{x}_{i}\right)\left(\mathbf{w} \mathbf{x}_{i}+b\right)-1\right) \rightarrow \min$
- Use
$-\sum_{i \in I} \alpha_{i}\left(\operatorname{label}\left(\mathbf{x}_{i}\right)\left(\mathbf{w} \mathbf{x}_{i}+b\right)-1\right)$
$=-\mathbf{w} \cdot\left(\sum_{i=1}^{n} \alpha_{i} \operatorname{label}\left(\mathbf{x}_{i}\right)\right)-\sum_{i=1}^{n} \alpha_{i} \operatorname{label}\left(\mathbf{x}_{i}\right) b+\sum_{i=1}^{n} \alpha_{i}$
$=-\mathbf{w} \cdot \mathbf{w}+\sum_{i=1}^{n} \alpha_{i}$

Mathematics

- Function L is now simplified:

$$
L=-\frac{1}{2} \mathbf{w} \cdot \mathbf{w}+\sum_{i=1}^{n} \alpha_{i}
$$

Mathematics

- Plugging in again
- $\mathbf{w}=\sum_{i=1}^{n} \alpha_{i} \operatorname{label}\left(\mathbf{x}_{i}\right) \mathbf{x}_{i}$
- we obtain
- $L=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} \operatorname{label}\left(\mathbf{x}_{i}\right) \operatorname{label}\left(\mathbf{x}_{j}\right) \mathbf{x}_{i} \cdot \mathbf{x}_{j}$
- which we want to maximize subject to constraints
- $\forall i \in I: \alpha_{i} \geq 0$ and $\sum_{i=1}^{n} \alpha_{i} \operatorname{label}\left(\mathbf{x}_{i}\right)=0$

Mathematics

- This is the "dual" optimization problem, but it is quadratic in the alphas.
- This means that it can be solved using Kuhn Tucker

Mathematics: Soft Margin SVM

- The preceding works if the data set is linearly separable
- If not, we introduce slack variables
- $\operatorname{label}\left(\mathbf{x}_{i}\right)\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right) \geq 1-\xi_{i}$
- They measure the violation of the separation condition
- If zero: separation condition is fulfilled and the point lies

$$
\geq \frac{1}{|\mathbf{w}|} \text { away from the hyperplane }
$$

- If $0<\xi_{i}<1$: point lies inside the margin, but point is classified
- If $\xi_{i} \geq 1$, point is mis-classified

Mathematics

- Choosing an optimization function is no longer straightforward
- Do we want a hyperplane with a few violations or do we want to minimize the total amount of violations

Mathematics

- One possibility:
- $\min _{\mathbf{w}, b, \xi_{i}}\left(\frac{|\mathbf{w}|^{2}}{2}+C \sum_{i=1}^{n} \xi_{i}^{k}\right)$
- subject to
- $\forall i \in I: \operatorname{label}\left(\mathbf{x}_{i}\right)\left(\mathrm{w} \cdot \mathbf{x}_{i}+b\right) \geq 1-\xi_{i}$
- $\forall i \in I: \quad \xi_{i} \geq 0$

Mathematics

- The power k in

$$
\min _{\mathbf{w}, b, \xi_{i}}\left(\frac{|\mathbf{w}|^{2}}{2}+C \sum_{i=1}^{n} \xi_{i}^{k}\right)
$$

- describes our policy:
- $k=1$: Hinge loss
- $k=2$: Quadratic losss
- C describes the trade-off between large margins and loss minimization

Mathematics

- Much research has been spent on optimizing for each case
- Luckily, we do not have to use them

SVM with Scikit-Learn

- Has a whole module svm
- from sklearn import svm

SVM with Scikit-Learn

- Generate data

```
d_a = np.random.multivariate_normal(
    mean = [1,3],
    cov = [ [.1,.02], [.02,.1]],
    size=100)
d_b = np.random.multivariate_normal(
    mean = [3,4],
    cov = [ [.2,.005], [.005,.2]],
    size=100)
```


SVM with Scikit-Learn

- Data are the feature, target are the labels

```
data = np.concatenate((d_a, d_b), axis=0)
target = np.concatenate((np.zeros(100), np.ones(100)))
```

- Now fit the whole data set

```
clf = svm.SVC(kernel='linear', C=3)
clf.fit(data, target)
```


SVM with Scikit-Learn

- Now print stuff:
- To see the coefficient, we needed to use the linear kernel

```
print(clf.support_vectors_)
w = clf.coef_[0]
a = -w[0] / w[1]
xx = np.linspace(1.5, 2.25)
yy = a * xx - (clf.intercept_[0]) / w[1]
print('w',w)
print(a)
```


SVM with Scikit-Learn

- Support vectors

$$
\left.\left.\begin{array}{c}
{[1.83311697} \\
{[1.49 .13576805]} \\
{[1.80136907} \\
{[1.41011599]} \\
{[2.10066171} \\
\hline 2.8279734] \\
{[2.16113553} \\
{[2.35389843]} \\
{[2.48658474}
\end{array} 2.79743539\right]\right]
$$

- Normal and intercept:

$$
\begin{aligned}
& \mathrm{w}\left[\begin{array}{ll}
2.63976203 & 0.98909858
\end{array}\right] \\
& -2.6688563564106373
\end{aligned}
$$

SVM with Scikit-Learn

- Draw the data and the hyperplane

```
plt.figure(1)
plt.plot(d_a[:,0], d_a[:,1], 'b.')
plt.plot(d_b[:,0], d_b[:,1], 'r.')
plt.plot(x\overline{x, yy, 'k:'')}
plt.show()
```


SVM with Scikit-Learn

SVM with Scikit-Learn

SVM with Scikit-Learn

- New points are evaluated only using the support vectors
- This makes SVM more efficient

SVM with Scikit-Learn

- Example with non-separable data sets

SVM with Scikit-Learn

- In this case, changing the C-value does not change much

$$
C=3
$$

$$
C=0.5
$$

SVM with Scikit-Learn

- This is a very difficult set to classify without transformation

SVM with Scikit-Learn

SVM with Scikit-Learn

- If we try with several kernels, results are not so good
- Import some stuff

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn import metrics
from sklearn.model_selection import train_test_split
np.random.seed(12)
```


SVM with Scikit-Learn

- Generate data set

```
d_a = np.random.multivariate_normal(
    mean = [2,2],
    cov = [ [.2,.15], [.15,.2]],
    size=150)
d_b = np.random.multivariate_normal(
    mean = [2,2],
    cov = [ [3,1], [1,3]],
    size=220)
```

```
one = np.array( [x for x in d_b if
```

one = np.array([x for x in d_b if
np.linalg.norm(x-[2,2])<1.5])
np.linalg.norm(x-[2,2])<1.5])
two = np.array([x for x in d_b if
two = np.array([x for x in d_b if
np.linalg.norm(x-[2,2])>2])

```
    np.linalg.norm(x-[2,2])>2])
```


SVM with Scikit-Learn

- Split dataset into training and test set (70\% training)

```
X_train, X_test, Y_train, Y_test =
    train_test_split(
    data,
    target,
    test__size=0.3)
```


SVM with Scikit-Learn

- Train

$$
\begin{aligned}
& \text { clf }=\text { svm.SVC(kernel }=\text { 'sigmoid') } \\
& \text { clf.fit(X_train, y_train) }
\end{aligned}
$$

SVM with Scikit-Learn

- Predict and get accuracy:

```
y_pred = clf.predict(X_test)
print("Accuracy:",
    metrics.accuracy_score(y_test, y_pred))
```


SVM with Scikit-Learn

Accuracy: linear 0.62
Accuracy: poly 0.7666666666666667
Accuracy: rbf 1.0
Accuracy: sigmoid 0.34

SVM with Scikit-Learn

- Could use a custom kernel

```
def my_kernel(X, Y):
    return np.dot((X-[2,2])**2,((Y-[2,2])**2).T)
clf = svm.SVC(kernel = my_kernel)
clf.fit(X_train, y_train)
```


SVM with Scikit-Learn

- Not surprisingly, this works completely

$$
\text { Accuracy: } 1.0
$$

SVM with Scikit-Learn

- Radial basis function kernel

$$
K(\mathbf{x}, \mathbf{y})=\exp \left(-\frac{\| \mathbf{x}-\left.\mathbf{y}\right|^{2}}{2 \sigma^{2}}\right)
$$

