
Probability & 
Statistics 
Thomas Schwarz, SJ



Overview
• Statistics is the lifeblood of data science


• You need to learn how to use statistics


• But the calculations are implemented in two powerful 
Python modules


• scipy.stats


• statsmodels



Probability
• We concentrate on categorical data


• Categorical data is discrete: e.g. "not infected", 
"infected, but no symptoms", "sick", "recovered", 
"dead"


• Categorical data can be ordinal :


• number of cases in Milwaukee County


• Categorical data can be nominal :


• Republican, Democrat, Other, Non-affiliated



Probability Distributions for 
Categorical Data

• Binomial distribution:


• Given a binary characteristic (yes/no) and a sample / 
population of  what is the probability that  have the 
characteristics


• If we assume that the presence of the characteristic in 
one individual is independent of the characteristic of 
another individual


                

n i

pbinom(y, n, π) =
n!

y!(n − y)!
πyπ(n−y)



In Python
• Let's run an experiment:


• Select an element of a population with probability p


• Count how often a population member is selected


• Then normalize

def run_trials(runs, pop_size, p): 
    results = np.zeros((pop_size+1)) 
    for _ in range(runs): 
        seen = len([x for x in np.random.rand(pop_size) 
if x < p]) 
        results[seen]+=1 
    return results/runs



In Python
• Then compare with the binomial probability


• binom.pmf is the probability mass function 

(n
k) pk(1 − p)n−k

from scipy.stats import binom 

results = run_trials(runs, pop_size, p) 
xvalues = np.arange(0, len(results)) 
binom.pmf(xvalues,pop_size, p)



In Python
• 100 runs : Prediction and experimental results differ



In Python
• 1000 runs: getting better



In Python
• 1,000,000 runs



Likelihood Estimation
• Problem:  Given data, can we say something about the underlying 

probability distribution


• Thought experiment: Throw a fair coin 10 times


• H H H H H H H H H H  is equally likely than H H T T H T T H H T


• Why do we think the first one is fishy and the second one not?


• We use a statistics (number of heads) and assume that coin is 
fair


• Observing 10 heads has probability    


• Observing 5 heads and 5 tails has probability 

2−10 = 0.0009765625

(10
5 )(

1
2

)5(
1
2

)5 = 0.24609375



Likelihood Estimation
• Reversely


• Given a sample and a putative probability 


• Likelihood: 


• What is the probability given  to observe a statistics 
on the sample

π

π



Likelihood Estimation
• Assume a binominally distributed random variable


• How do we estimate  from a sample?


• Likelihood:  Given , what is the chance to observe 
what we have seen


• Observed:  out of  


• Probability that this happens is 

π

π

x n

ℒ(x : p) =
x!(n − x)!

n!
πx(1 − π)(n−x)



In Python
• Example: observed 30 out of 100

def likelihood(x, pop_size): 
    prob = np.linspace(0,1,1000) 
    likelihood = binom.pmf(x, pop_size, prob) 

    fig = plt.figure() 
    ax = plt.axes() 

    ax.set_xlabel("Probability") 
    ax.set_ylabel("Frequency") 
    ax.plot(prob, likelihood) 
    fig.savefig("{}{}.pdf".format(x,pop_size))



In Python
• Example: observed 30 out of 100



Binomial Distribution
• Likelihood is maximized for 


• Formally: 


• 


• 


• which implies by differentiation that 


• 


• 


•

π = 30/100

ℒ(x : p) → max

const ⋅ px(1 − p)(n−x) → max

xpx−1(1 − p)n−x − (n − x)px(1 − p)n−x−1 = 0

x(1 − p) = (n − x)p

p =
x
n



Binomial Distribution
• Therefore: Maximum Likelihood estimator for  given  

out of  observations is


•

π x
n

x
n



Getting Statistics



First Step : Visualize
• Example: Heights



Second Step: Get Stats
• Statistic: any type of measure taken on a sample


• Implemented in scipy.stats


• Random number generation in np.random



Sample Generation
• Use np.random


• Returns samples for many different distributions


• E.g.   

• np.random.normal(mean, std, 
size=1000) 

• np.random.gamma(shape, scale, 
size=1000) 

• Can use numpy.random.seed(12345)to insure 
same behavior



Getting Statistical Measures
• Use scipy.stats


• Has many different distributions


• scipy.stats.norm  is a distribution object


• Has a pdf, a cdf, …



Getting Statistic Measures
def stats(): 
    np.random.seed(6072001) 
    sample1 = create_beta(alpha = 1.5, beta = 2) 
    fig = plt.figure() 
    ax = plt.axes() 
    ax.set_xlabel("Values") 
    ax.set_ylabel("Frequency") 
    ax.hist(sample1, bins = 20) 
    fig.savefig('beta15_2') 
    print(f'mean is {np.mean(sample1)}') 
    print(f'median is {np.median(sample1)}') 
    print(f'25% quantile is {scipy.stats.scoreatpercentile(sample1,25)}') 
    print(f'75% quantile is {scipy.stats.scoreatpercentile(sample1,75)}') 
    print(f'st. dev. is {np.std(sample1)}') 
    print(f'skew is {scipy.stats.skew(sample1)}') 
    print(f'kurtosis is {scipy.stats.kurtosis(sample1)}')



Getting Statistic Measures



Getting Statistic Measures
• Many statistical descriptors are available:

mean is 0.44398507464612896 
median is 0.42091200120073147 
25% quantile is 0.2421793406556383 
75% quantile is 0.6277333146506446 
st. dev. is 0.24067438845525105 
skew is 0.24637036296183917 
kurtosis is -0.933113268968349



Getting Statistical Measures
• Can also fit to distributions


• Example:  Height data


• Use norm.fit

from scipy.stats import norm 
pop1 = np.array([151.765, 156.845, 163.83, 168.91, 
 165.1, 151.13, 163.195, 157.48, 161.29, 146.4,  
 147.955, 161.925, 160.655, 151.765, 162.8648,  
 171.45, 154.305, 146.7, … 

loc, std = norm.fit(pop1)



Getting Statistical Measures
• To display the data:


• Create bins for a histogram


• We need the centers later on


• Numpy has a function that calculates a histogram

bins = np.linspace(135, 180, 46)

dt = np.histogram(pop1, bins)[0]

binscenter = np.array([(bins[i]+bins[i+1])/2  
                for i in range(len(bins)-1)])



Getting Statistical Measures
• dt contains the number of elements in a bin

[ 0  2  0  1  3  3  5 10  5 11  8 14 19  9 24  8  
 18 16 14 23  6 15 14 12 9 26 17 11 13  3  8  2   
  7  5  1  5  2  2  0  0  0  0  0  0  1]



Getting Statistical Measures
• We now determine mean and standard deviation using 

the fit function


• We could do the same using np.mean and np.std

loc, std = norm.fit(pop1) 

print(loc, std)



Getting Statistical Measures
• We now create a normal distribution object with this mean 

and this standard deviation

pdf = norm(loc, std).pdf



Getting Statistical Measures
• Now, we draw both the histogram and the pdf


• The pdf has an integral of 1, so we multiply with the 
number of elements in the population

plt.figure() 
plt.bar(binscenter, dt, width = bins[1]-bins[0]) 
plt.plot(binscenter, len(pop1)*pdf(binscenter),'red') 
plt.show() 



Getting Statistical Measures



Statistical Tests



Statistical Tests
• Statistical test calculates a value — the test statistics — 

from a sample in order to refute or confirm a hypothesis


• Formulate a null hypothesis


• This is usually the boring stuff: two samples from the 
same distribution, mean is where it is expected to 
be, …


• Calculate the probability that the observed statistics or 
a more significant result has occurred given the null 
hypothesis


• If the probability is small: reject the null hypothesis



Statistical Tests
• Alpha — measures the confidence as 


• Typical are 


• Critical value —  point at which we start rejecting the null 
hypothesis


• P-value — probability of the observed outcome (or 
something more significant) under the null hypothesis


• We reject if the p-value is below 


• WARNING: while used, this is somewhat controversial 
among statisticians

α = 1−confidence

α = 0.05, α = 0.01

α



Statistical Tests
• Create two samples, 


• Beta distributed with   and 


• Normally distributed with  and 

α = 1.5 β = 2

μ = 0.5 σ = 0.25



Statistical Tests
• To test whether two means are equal:


• z-test:  Assumes two normally / Gaussian distributions 
with same standard deviation


• Zero Hypothesis:  The means are equal


• z-score is  


• Use statsmodels


• WARNING: population should be at least 30

z =
x − μ

σ/ n



Statistical Tests
• Example:


• Result:


• Again, reject zero hypothesis

print('z-score\n', 
statsmodels.stats.weightstats.ztest(sample1, x2=None, 
value = 0.5))

z-score 
 (-3.672599393379993, 0.00024009571884724942)



Statistical Tests
• Compare the two samples

z-score 
 (-4.611040794712781, 4.0065789390516926e-06)

statsmodels.stats.weightstats.ztest( 
   sample1,  
   sample2,  
   value = 0, 
   alternative='two-sided' 
)



Statistical Tests
• Student t-test:


• Assumes Gaussian distribution


• Works for different variances


• Can use for smaller samples



Statistical Tests
• Example: One sample t-test


• Two sample t-test

print(scipy.stats.ttest_1samp(sample1, 0.5))

Ttest_1sampResult(statistic=-3.672599393379993, 
pvalue=0.0002938619482386932)

print(scipy.stats.ttest_ind(sample1, sample2))

Ttest_indResult(statistic=-4.611040794712781, 
pvalue=5.0995747086364474e-06)



Statistical Tests
• This is just a sample of important tests



Contingency Tables



Contingency tables
• Experiments to measure effects of causes on outcomes


• Example:


• Test two machine learning algorithm on ten data sets


• Can we say that classifier 2 is better or could this be 
chance?

Correct Incorrect Totals
Classifier 1 6 4 10
Classifier 2 5 5 10

Totals 11 9



Contingency Tables
• Other example: treatment versus control


• Does Aspirin help against cardiovascular disease (1988)

myocardial  
infarction none total

Placebo 189 10845 11034

Aspirin 104 10933 11037

Total 293 21778



Contingency Tables
• Usually have 


• explanatory variables (Aspirin) 


• response variables (Disease)



Contingency Tables
• Type I error:


• We report an effect when there is none


• Type II error:


• We do not report an effect even though there is one



Contingency Tables
• There are many possible statistics


• More, if the number of observations is high



Contingency Tables
• Number of different 

statistical tests


• Built into statsmodels

myocardial  
infarction none total

Placebo 189 10845 11034

Aspirin 104 10933 11037

Total 293 21778

               Estimate   SE   LCB   UCB  p-value 
------------------------------------------------- 
Odds ratio        1.832       1.440 2.331   0.000 
Log odds ratio    0.605 0.123 0.365 0.846   0.000 
Risk ratio        1.818       1.433 2.306   0.000 
Log risk ratio    0.598 0.121 0.360 0.835   0.000 
-------------------------------------------------



Contingency Tables
• Odds: 


• If we take a placebo, odds are 


• If we do not take a placebo, odds are 


• The statistic looks at the ratio of the odds: 

 


• If there would be no influence, then we expect .

189
10845

104
10933

θ =
189 ⋅ 10933
104 ⋅ 10845

= 1.832

θ = 1

myocardial  
infarction none total

Placebo 189 10845 11034
Aspirin 104 10933 11037
Total 293 21778



Contingency Tables
• Log odds


• The statistics for odds are heavily skewed


• Easier to use  which can be approximated with a 
normal distribution

log(θ)



Contingency Tables
• Relative risk 


•  probability of success for group one


•  probability of success for group two


• Relative risk is  


• Depends on how we define success because in general

π1

π2
π1

π2

π1

π2
≠

1 − π
1 − π2



Contingency Tables
• Example:


• Estimate relative risk from observations


• τ =
189/11034
104/11037

= 1.817802

myocardial  
infarction none total

Placebo 189 10845 11034
Aspirin 104 10933 11037
Total 293 21778



Contingency Tables
• Again, log of risk is easier to approximate



Contingency Tables
• statsmodels.Table2x2 gives all four values together with a 

p-value


• The risk and log risk ratio statistics are not symmetric, so 
by transposing, you get different values



Contingency Tables
• For small samples, we should use Fisher's exact test


• If there is no influence of the explanatory variables, 
then the numbers in the cells are distributed according 
to a hyper-geometric distribution


• With Python, we can apply this even to larger samples


• Use fisher_exact in scipy.stats



Contingency Tables
•  Calling Fisher's exact method


• Output is value of the statistics and the p-value


• Again, we conclude that the difference between Aspirin 
and Placebo are unlikely to have happened by chance

scipy.stats.fisher_exact(table))

(1.8320539419087136, 5.032835599791868e-07)



Testing for Normality



Normality Tests
• A large number of models assume that data is or close to 

normally distributed


• If data comes from normal distribution:


• Lots of statistical tricks available


• If data comes from another distribution:


• Maybe use "non-parametic" methods


• Use tests to determine whether a given set of data is likely to 
come from a normal distribution


• Step 1:


• Use a histogram or scatter-plot of the data



Normality Tests
• I created two arrays of length 250


• With my birth date as the seed for reproducability


• First, I create histograms (with default settings)

def show(array, name): 
    fig = plt.figure() 
    ax = plt.axes() 
    ax.set_xlabel("Values") 
    ax.set_ylabel("Frequency") 
    ax.hist(array) 
    fig.savefig(name)



Normality Tests
• Results are:


• Left: not symmetric (skew is positive)


• Right: shape does not look quite right (kurtosis)



Normality Tests
• Quantile-Quantile Plot


• Quantile q:  Proportion q of the data set fall below the 
point


• Example: 30% or 0.3 quantile: 30% of the points are 
below, 70% of the points are above


• Plot two data-sets to compare whether they come from 
the same distribution


• Plot one data-set.  If linear: suggests normal distribution



Normality Tests
• QQ-Plot part of statsmodels package 


• Used with numpy, scipy, or pandas and pyplot


• line will draw a 45° line to compare with normal 
distribution

import statsmodels.api as sm 

def showqq(array, name): 
    fig = sm.qqplot(np.array(array), line='s') 
    fig.savefig(name)



Normality Tests
• Results:


• Some outliers are normal



Normality Tests
• Statistical tests:


• Takes data and calculates a test statistics


• Calculates the probability of the test value assuming that a null 
hypothesis is true


• If the probability is too small, concludes that the null hypothesis 
is false


• In Scipy:


• Null hypothesis: "Distribution is normal"


• Returns a p-value


• If p-value is smaller than  : reject the Null Hypothesis, otherwise 
see it supported by data

α



Normality Tests
• Shapiro Wilk Test:


     Calculates a test statistics 


      where  ordered sample values


       constants from covariance, variance, mean of sample


• For small samples, not so good


• W-distribution is calculated via Monte-Carlo simulation

W =
(∑n

i=1 aixi)2

∑n
i=1 (xi − x̄)2

xi

ai



Normality Tests
• Use scipy.stats.shapiro


• Input is the data


• Output is the W-value and the p-value

import scipy.stats 

def getshapiro(array): 
    return scipy.stats.shapiro(array)



Normality Tests
• Results:


• Looks valid, normalcy cannot be rejected at the 0.05 level

(0.9899240732192993, 0.08035389333963394) 
(0.9923275709152222, 0.22104869782924652)



Normality Tests
• D'Agostino's  test:


• Looks at skew and curtosis of the normal distribution


• Implemented in scipy.stats as normaltest


• Results:


• Null hypothesis cannot be rejected

k2

def get_dagostino(array): 
    return scipy.stats.normaltest(array)

statistic=3.7394424212691764, pvalue=0.15416663584307644 
statistic=2.821146323808743, pvalue=0.24400338961897727)



Normality Tests
• Anderson Darling


• Comes from the Kolmogorov Smirnov test


• KS tests for the distance between the cumulative 
probability of two samples or one sample with a 
reference distribution



Normality Tests
• Anderson-Darling lives in scipy.stats


• Prints out statistics with different significance levels


• Sample 2: the two statistics are smaller than the critical 
values and the null hypothesis cannot be rejected

print('Anderson Darling: {}'.format( 
             scipy.stats.anderson(sample1))) 
print('Anderson Darling: {}'.format( 
             scipy.stats.anderson(sample2)))

Anderson Darling: AndersonResult(statistic=1.998061561955467, 
critical_values=array([0.567, 0.646, 0.775, 0.904, 1.075]), 
significance_level=array([15. , 10. ,  5. ,  2.5,  1. ])) 
Anderson Darling: AndersonResult(statistic=1.0717930773325293, 
critical_values=array([0.567, 0.646, 0.775, 0.904, 1.075]), 
significance_level=array([15. , 10. ,  5. ,  2.5,  1. ]))



Normality Tests
• Sample 1 was however not normally distributed


• Sample 2 was generated with a cut-off normal distribution 
that prevented samples below 0 and above 1


• This is typical, there was insufficient information to reject 
the thesis of normality



Limitations



Limitations
• With a p value of 0.05, one in twenty tests is likely to give 

us a false positive


• Rate of false negatives is also around that



Limitations
• Not being able to reject the zero hypothesis does not 

mean that the hypothesis is wrong



Example
• Height data



Example
• Gender is an important factor for height


• If we know the heights, the distribution looks more normal

140 150 160 170 180
0

10

20

30

40



Example
• When we apply normality tests:


• Female is normally distributed


• Male is not normally distributed according to Anderson


• Complete population is normally distributed



Example
• Can we recover the two distributions?


• Let's try to fit a combination of two normal distributions 
to the binned data

def func(t, a,  b, m1, s1, m2, s2): 
    return a*norm(m1, s1).pdf(t) + b*norm(m2, s2).pdf(t)

bins = np.linspace(135, 180, 46) 
dt = np.histogram(pop1, bins)[0] 
binscenter = np.array([(bins[i]+bins[i+1])/2 for i in          
               range(len(bins)-1)]) 
params, pcov = curve_fit(func, 
                         xdata = binscenter, 
                         ydata = dt, 
                         p0=[1,1,145,15,160,15] 
                         )



Example

plt.figure() 
plt.bar(binscenter, dt, width = bins[1]-bins[0]) 
plt.plot(binscenter,func(binscenter, *params),'red') 
#plt.plot(binscenter, len(pop1)*pdf(binscenter),'red') 
plt.show()



Example
• Spectacular failure



Conclusions
• Numpy has a very broad selection of random number 

generators


• Scipy.stats has a very good set of implementations for 
many standard statistical tests


• Which cannot overcome limitations in the data



Readings
• Scipy Lecture notes p.195ff


