Probability & Statistics

Thomas Schwarz, SJ

Overview

- Statistics is the lifeblood of data science
 - You need to learn how to use statistics
 - But the calculations are implemented in two powerful Python modules
 - scipy.stats
 - statsmodels

Probability

- We concentrate on categorical data
 - Categorical data is discrete: e.g. "not infected", "infected, but no symptoms", "sick", "recovered", "dead"
 - Categorical data can be ordinal :
 - number of cases in Milwaukee County
 - Categorical data can be nominal :
 - Republican, Democrat, Other, Non-affiliated

Probability Distributions for Categorical Data

- Binomial distribution:
 - Given a binary characteristic (yes/no) and a sample / population of n what is the probability that i have the characteristics
 - If we assume that the presence of the characteristic in one individual is independent of the characteristic of another individual

$$p_{binom}(y,n,\pi) = \frac{n!}{y!(n-y)!} \pi^y \pi^{(n-y)}$$

- Let's run an experiment:
 - Select an element of a population with probability p
 - Count how often a population member is selected
 - Then normalize

```
def run_trials(runs, pop_size, p):
    results = np.zeros((pop_size+1))
    for _ in range(runs):
        seen = len([x for x in np.random.rand(pop_size)
        if x < p])
        results[seen]+=1
        return results/runs</pre>
```

- Then compare with the binomial probability
 - binom.pmf is the probability mass function $\binom{n}{k} p^k (1-p)^{n-k}$

from scipy.stats import binom

results = run_trials(runs, pop_size, p)
xvalues = np.arange(0, len(results))
binom.pmf(xvalues,pop_size, p)

• 100 runs : Prediction and experimental results differ

• 1000 runs: getting better

• 1,000,000 runs

Likelihood Estimation

- Problem: Given data, can we say something about the underlying probability distribution
 - Thought experiment: Throw a fair coin 10 times
 - HHHHHHHHH is equally likely than HHTTHTTHHT
 - Why do we think the first one is fishy and the second one not?
 - We use a statistics (number of heads) and assume that coin is fair
 - Observing 10 heads has probability $2^{-10} = 0.0009765625$
 - Observing 5 heads and 5 tails has probability $\binom{10}{5}(\frac{1}{2})^5(\frac{1}{2})^5 = 0.24609375$

Likelihood Estimation

- Reversely
 - Given a sample and a putative probability π
 - Likelihood:
 - What is the probability given π to observe a statistics on the sample

Likelihood Estimation

- Assume a binominally distributed random variable
 - How do we estimate π from a sample?
 - Likelihood: Given π , what is the chance to observe what we have seen
 - Observed: *x* out of *n*
 - Probability that this happens is $\mathscr{L}(x:p) = \frac{x!(n-x)!}{n!} \pi^{x} (1-\pi)^{(n-x)}$

• Example: observed 30 out of 100

```
def likelihood(x, pop_size):
    prob = np.linspace(0,1,1000)
    likelihood = binom.pmf(x, pop size, prob)
```

```
fig = plt.figure()
ax = plt.axes()
```

```
ax.set_xlabel("Probability")
ax.set_ylabel("Frequency")
ax.plot(prob, likelihood)
fig.savefig("{}{}.pdf".format(x,pop size))
```

• Example: observed 30 out of 100

Binomial Distribution

- Likelihood is maximized for $\pi = 30/100$
- Formally:

• $\mathcal{L}(x:p) \to \max$

- const $\cdot p^{x}(1-p)^{(n-x)} \to \max$
- which implies by differentiation that
 - $xp^{x-1}(1-p)^{n-x} (n-x)p^x(1-p)^{n-x-1} = 0$

•
$$x(1-p) = (n-x)p$$

•
$$p = \frac{x}{n}$$

Binomial Distribution

 Therefore: Maximum Likelihood estimator for π given x out of n observations is

 $-\frac{x}{n}$

Getting Statistics

First Step : Visualize

• Example: Heights

Second Step: Get Stats

- Statistic: any type of measure taken on a sample
- Implemented in scipy.stats
- Random number generation in np.random

Sample Generation

- Use np.random
 - Returns samples for many different distributions
 - E.g.
 - np.random.normal(mean, std, size=1000)
 - np.random.gamma(shape, scale, size=1000)
 - Can use numpy.random.seed(12345)to insure same behavior

- Use scipy.stats
- Has many different distributions
 - scipy.stats.norm is a distribution object
 - Has a pdf, a cdf, ...

```
def stats():
    np.random.seed(6072001)
    sample1 = create beta(alpha = 1.5, beta = 2)
    fig = plt.figure()
    ax = plt.axes()
    ax.set xlabel("Values")
    ax.set ylabel("Frequency")
    ax.hist(sample1, bins = 20)
    fig.savefig('beta15 2')
    print(f'mean is {np.mean(sample1)}')
    print(f'median is {np.median(sample1)}')
    print(f'25% quantile is {scipy.stats.scoreatpercentile(sample1,25)}')
    print(f'75% quantile is {scipy.stats.scoreatpercentile(sample1,75)}')
    print(f'st. dev. is {np.std(sample1)}')
    print(f'skew is {scipy.stats.skew(sample1)}')
    print(f'kurtosis is {scipy.stats.kurtosis(sample1)}')
```


• Many statistical descriptors are available:

mean is 0.44398507464612896
median is 0.42091200120073147
25% quantile is 0.2421793406556383
75% quantile is 0.6277333146506446
st. dev. is 0.24067438845525105
skew is 0.24637036296183917
kurtosis is -0.933113268968349

- Can also fit to distributions
 - Example: Height data
 - Use norm.fit

```
from scipy.stats import norm
pop1 = np.array([151.765, 156.845, 163.83, 168.91,
165.1, 151.13, 163.195, 157.48, 161.29, 146.4,
147.955, 161.925, 160.655, 151.765, 162.8648,
171.45, 154.305, 146.7, ...
```

```
loc, std = norm.fit(pop1)
```

- To display the data:
 - Create bins for a histogram

```
bins = np.linspace(135, 180, 46)
```

• We need the centers later on

Numpy has a function that calculates a histogram

dt = np.histogram(pop1, bins)[0]

dt contains the number of elements in a bin

3 3 5 10 5 11 8 14 19 9 24 0 1 16 14 23 6 15 14 12 9 26 17 11 13 1 5 2 2 1]

We now determine mean and standard deviation using the fit function

loc, std = norm.fit(pop1)
print(loc, std)

• We could do the same using np.mean and np.std

 We now create a normal distribution object with this mean and this standard deviation

pdf = norm(loc, std).pdf

- Now, we draw both the histogram and the pdf
 - The pdf has an integral of 1, so we multiply with the number of elements in the population

```
plt.figure()
plt.bar(binscenter, dt, width = bins[1]-bins[0])
plt.plot(binscenter, len(pop1)*pdf(binscenter),'red')
plt.show()
```


- Statistical test calculates a value the test statistics from a sample in order to refute or confirm a hypothesis
 - Formulate a null hypothesis
 - This is usually the boring stuff: two samples from the same distribution, mean is where it is expected to be, ...
 - Calculate the probability that the observed statistics or a more significant result has occurred given the null hypothesis
 - If the probability is small: reject the null hypothesis

- Alpha measures the confidence as $\alpha = 1 \text{confidence}$
 - Typical are $\alpha = 0.05, \ \alpha = 0.01$
- Critical value point at which we start rejecting the null hypothesis
- P-value probability of the observed outcome (or something more significant) under the null hypothesis
- We reject if the p-value is below α
- WARNING: while used, this is somewhat controversial among statisticians

- Create two samples,
 - Beta distributed with $\alpha = 1.5$ and $\beta = 2$
 - Normally distributed with $\mu=0.5$ and $\sigma=0.25$

- To test whether two means are equal:
 - z-test: Assumes two normally / Gaussian distributions with same standard deviation
 - Zero Hypothesis: The means are equal

• z-score is
$$z = \frac{x - \mu}{\sigma / \sqrt{n}}$$

- Use statsmodels
- WARNING: population should be at least 30
• Example:

print('z-score\n',
statsmodels.stats.weightstats.ztest(sample1, x2=None,
value = 0.5))

• Result:

z-score

(-3.672599393379993, 0.00024009571884724942)

• Again, reject zero hypothesis

• Compare the two samples

```
statsmodels.stats.weightstats.ztest(
    sample1,
    sample2,
    value = 0,
    alternative='two-sided'
)
z-score
```

(-4.611040794712781, 4.0065789390516926e-06)

- Student t-test:
 - Assumes Gaussian distribution
 - Works for different variances
 - Can use for smaller samples

• Example: One sample t-test

print(scipy.stats.ttest_1samp(sample1, 0.5))

Ttest_1sampResult(statistic=-3.672599393379993, pvalue=0.0002938619482386932)

• Two sample t-test

print(scipy.stats.ttest_ind(sample1, sample2))

Ttest_indResult(statistic=-4.611040794712781, pvalue=5.0995747086364474e-06)

• This is just a sample of important tests

- Experiments to measure effects of causes on outcomes
- Example:
 - Test two machine learning algorithm on ten data sets
 - Can we say that classifier 2 is better or could this be chance?

	Correct	Incorrect	Totals
Classifier 1	6	4	10
Classifier 2	5	5	10
Totals	11	9	

- Other example: treatment versus control
 - Does Aspirin help against cardiovascular disease (1988)

	myocardial infarction	none	total
Placebo	189	10845	11034
Aspirin	104	10933	11037
Total	293	21778	

- Usually have
 - explanatory variables (Aspirin)
 - response variables (Disease)

- Type I error:
 - We report an effect when there is none
- Type II error:
 - We do not report an effect even though there is one

- There are many possible statistics
 - More, if the number of observations is high

 Number of different 			myocaro infarcti	dial no on	ne	total	
Statistical tests		Placebo	189	108	45	11034	
 Built into statsmodels 		Aspirin	104	109	33	11037	
		Total	293	217	78		
	Estimate	SE	LCB	UCB	p-1	value	
Odds ratio Log odds ratio Risk ratio Log risk ratio	1.832 0.605 1.818 0.598	0.123 0.121	1.440 0.365 1.433 0.360	2.331 0.846 2.306 0.835	(((000.0 0.000 0.000 0.000	

		myocardial infarction	none	total
• Ouus.	Placebo	189	10845	11034
189	Aspirin	104	10933	11037
If we take a placebo, odds are —	Total	293	21778	
10845				
• If we do not take a placebo, odds are $\frac{1}{10}$	04			
10				

- The statistic looks at the ratio of the odds: $\theta = \frac{189 \cdot 10933}{104 \cdot 10845} = 1.832$
- If there would be no influence, then we expect $\theta = 1$.

- Log odds
 - The statistics for odds are heavily skewed
 - Easier to use $\log(\theta)$ which can be approximated with a normal distribution

- Relative risk
 - π_1 probability of success for group one
 - π_2 probability of success for group two

• Relative risk is
$$\frac{\pi_1}{\pi_2}$$

• Depends on how we define success because in general $\frac{\pi_1}{\pi_2} \neq \frac{1-\pi}{1-\pi_2}$

•	Example:		myocardial infarction	none	total
		Placebo	189	10845	11034
	• Estimate relative risk from observations	Aspirin	104	10933	11037
		Total	293	21778	
	• $\tau = \frac{189/11034}{104/11037} = 1.817802$				

• Again, log of risk is easier to approximate

- statsmodels.Table2x2 gives all four values together with a p-value
- The risk and log risk ratio statistics are not symmetric, so by transposing, you get different values

- For small samples, we should use Fisher's exact test
 - If there is no influence of the explanatory variables, then the numbers in the cells are distributed according to a hyper-geometric distribution
 - With Python, we can apply this even to larger samples
- Use fisher_exact in scipy.stats

• Calling Fisher's exact method

```
scipy.stats.fisher_exact(table))
```

• Output is value of the statistics and the p-value

(1.8320539419087136, 5.032835599791868e-07)

 Again, we conclude that the difference between Aspirin and Placebo are unlikely to have happened by chance

Testing for Normality

- A large number of models assume that data is or close to normally distributed
 - If data comes from normal distribution:
 - Lots of statistical tricks available
 - If data comes from another distribution:
 - Maybe use "non-parametic" methods
- Use tests to determine whether a given set of data is likely to come from a normal distribution
- Step 1:
 - Use a histogram or scatter-plot of the data

- I created two arrays of length 250
 - With my birth date as the seed for reproducability
- First, I create histograms (with default settings)

```
def show(array, name):
    fig = plt.figure()
    ax = plt.axes()
    ax.set_xlabel("Values")
    ax.set_ylabel("Frequency")
    ax.hist(array)
    fig.savefig(name)
```

• Results are:

- Left: not symmetric (skew is positive)
- Right: shape does not look quite right (kurtosis)

- Quantile-Quantile Plot
 - Quantile q: Proportion q of the data set fall below the point
 - Example: 30% or 0.3 quantile: 30% of the points are below, 70% of the points are above
- Plot two data-sets to compare whether they come from the same distribution
- Plot one data-set. If linear: suggests normal distribution

- QQ-Plot part of statsmodels package
 - Used with numpy, scipy, or pandas and pyplot

```
import statsmodels.api as sm
```

```
def showqq(array, name):
    fig = sm.qqplot(np.array(array), line='s')
    fig.savefig(name)
```

 line will draw a 45° line to compare with normal distribution

• Results:

Some outliers are normal

- Statistical tests:
 - Takes data and calculates a test statistics
 - Calculates the probability of the test value assuming that a null hypothesis is true
 - If the probability is too small, concludes that the null hypothesis is false
 - In Scipy:
 - Null hypothesis: "Distribution is normal"
 - Returns a p-value
 - If p-value is smaller than α : reject the Null Hypothesis, otherwise see it supported by data

• Shapiro Wilk Test:

Calculates a test statistics $W = \frac{(\sum_{i=1}^{n} a_i x_i)^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$

where x_i ordered sample values

 a_i constants from covariance, variance, mean of sample

- For small samples, not so good
- W-distribution is calculated via Monte-Carlo simulation

- Use scipy.stats.shapiro
 - Input is the data
 - Output is the W-value and the p-value

```
import scipy.stats
```

```
def getshapiro(array):
    return scipy.stats.shapiro(array)
```

• Results:

(0.9899240732192993, 0.08035389333963394) (0.9923275709152222, 0.22104869782924652)

• Looks valid, normalcy cannot be rejected at the 0.05 level

- D'Agostino's k^2 test:
 - Looks at skew and curtosis of the normal distribution
 - Implemented in scipy.stats as normaltest

def get_dagostino(array):
 return scipy.stats.normaltest(array)

• Results:

statistic=3.7394424212691764, pvalue=0.154166635843 statistic=2.821146323808743, pvalue=0.2440033896189

• Null hypothesis cannot be rejected

- Anderson Darling
 - Comes from the Kolmogorov Smirnov test
 - KS tests for the distance between the cumulative probability of two samples or one sample with a reference distribution

- Prints out statistics with different significance levels

Anderson Darling: AndersonResult(statistic=1.998061561955467, critical_values=array([0.567, 0.646, 0.775, 0.904, 1.075]), significance_level=array([15., 10., 5., 2.5, 1.])) Anderson Darling: AndersonResult(statistic=1.0717930773325293, critical_values=array([0.567, 0.646, 0.775, 0.904, 1.075]), significance_level=array([15., 10., 5., 2.5, 1.]))

 Sample 2: the two statistics are smaller than the critical values and the null hypothesis cannot be rejected

- Sample 1 was however **not** normally distributed
- Sample 2 was generated with a cut-off normal distribution that prevented samples below 0 and above 1
- This is typical, there was insufficient information to reject the thesis of normality

Limitations
Limitations

- With a p value of 0.05, one in twenty tests is likely to give us a false positive
- Rate of false negatives is also around that

Limitations

 Not being able to reject the zero hypothesis does not mean that the hypothesis is wrong

• Height data

- Gender is an important factor for height
- If we know the heights, the distribution looks more normal

- When we apply normality tests:
 - Female is normally distributed
 - Male is not normally distributed according to Anderson
 - Complete population is normally distributed

- Can we recover the two distributions?
 - Let's try to fit a combination of two normal distributions to the binned data
- def func(t, a, b, m1, s1, m2, s2):
 return a*norm(m1, s1).pdf(t) + b*norm(m2, s2).pdf(t)

plt.figure()
plt.bar(binscenter, dt, width = bins[1]-bins[0])
plt.plot(binscenter, func(binscenter, *params),'red')
#plt.plot(binscenter, len(pop1)*pdf(binscenter),'red')
plt.show()

• Spectacular failure

Conclusions

- Numpy has a very broad selection of random number generators
- Scipy.stats has a very good set of implementations for many standard statistical tests
 - Which cannot overcome limitations in the data

Readings

• Scipy Lecture notes p.195ff