
Interacting with Files
Python

Files
• Files

• Basic container of data in modern computing
system

• Organized into a hierarchy of directories

Files
/

/etc /Applications /var /tmp /Users

/etc/master.passwd/etc/Apache

/Users/tschwarz /Users/guest /Users/technician

/Users/tschwarz/Documents /Users/tschwarz/Applications

/Users/tschwarz/Documents/PythonPrograms

/Users/tschwarz/Documents/hangman.py/Users/tschwarz/Documents/hangman.py/Users/tschwarz/Documents/hangman.py/Users/tschwarz/Documents/hangman.py/Users/tschwarz/Documents/hangman.py/Users/tschwarz/Documents/hangman.py/Users/tschwarz/Documents/hangman.py/Users/tschwarz/Documents/hangman.py/Users/tschwarz/Documents/hangman.py/Users/tschwarz/Documents/hangman.py

A small subset of directories and files on a system

Files in Python
• Access to file system through os module

• Discussed later in course
• Files accessed in

• text mode
• Contents interpreted according to encoding

• binary mode
• Contents not interpreted

Files in Python
• Python interacts by files through

• reading
• writing / appending
• both

Files in Python
• Files need to be opened

• File given by name
• Relative path: Navigation from directory of

the file
• Absolute path: Navigation from the root of

the file system

Files in Python
• File Name Examples:

• Absolute path on a Mac / Unix
/Users/tjschwarzsj/Google Drive/AATeaching/Python/Programs/pr.py

• Relate path on a Mac / Unix
• “../“ means move up on directory

pr.py

../Slides/week7.key

Files in Python
• Windows uses backward slashes to separate

directories in a file name
• Sometimes need to be escaped: \\
• Absolute paths need to include drive name:

• c:\\users\\tschwarz\\My Documents\\Teaching\
\temp.py

• We will typically read and create files in the same
directory as the python program is located

Files in Python
• Before files are used, program needs to open them
• After they are being used, program should close

them
• Will automatically closed when program

terminates
• Long-running programs could hog resources

Opening Files in Python
• File objects have normal variable names
inFile = open(“data.txt”,”w”)

• opens a file “data.txt” in write mode

• open takes :
• file name — absolute / relative path
• mode — r (read), w (write), a (appending)
• mode — b (binary), “” (not binary)

Closing Files in Python
• We close file by invoking close

• inFile.close()

Why we need to close files
• Files are automatically closed when the program

terminates
• When one application has opened a file for writing it

acquires a write lock on the file and no other application
can access the file.

• When one application has opened a file for reading, it
acquires a read lock on the file and no other application
can write to it.

• If you write programs that last more than a few seconds,
you do not want to hog files when you do not need them.

With-clauses
• Python 3 allows us to open and close files in a

single block
with open("twoft8.11.txt") as inFile, open("twoftres8.11.txt",
"w") as outFile:

#Here you work with the file

Processing Files in Python
• We write strings to the file
 with open(‘somefile.txt’,’wt’) as f:

f.write(str(500)+”\n")

• Redirect print
 with open(‘somefile.txt’,’wt’) as f:

print(500, file = f)

Processing Files in Python
• Reading files

• The read-instruction
string = inFile.read(10)

reads ten bytes of the file
• Read the entire file
with open(‘somefile.txt’, ‘rt’ as f:

data = f.read()

Processing Files in Python
• Reading files

• Read line by line
with open(‘somefile.txt’, ‘rt’) as f:

 for line in f:

 #process line

More String Processing
• To process read lines:

• strip() and its variants lstrip(), rstrip()
• Remove white spaces (default) or list of characters

from the beginning & end of the string
• split() creates a list of words separated by white

space (default)
"This is a sentence with many words in
it.”.split()

['This', 'is', 'a', 'sentence', 'with',
'many', 'words', 'in', 'it.']

Examples
• Finding all words over 13 letters long in “Alice in

Wonderland”
• Download from Project Gutenberg

import string

with open("alice.txt", "rt", encoding = "utf-8") as f:
 for line in f:
 for word in line.split():
 if len(word) > 13:
 print(word)

Examples
• Count the number of words and of lines in “Alice in

Wonderland”
• Read the file line by line

• The number of words in a line is the length of line.split.

import string

line_counter = 0
word_counter = 0
with open("alice.txt", "rt", encoding = "utf-8") as f:
 for line in f:
 line_counter += 1
 word_counter += len(line.split())
print(line_counter, word_counter)

