
Tuples, Sets, and
Frozen Sets

Thomas Schwarz, SJ

Tuples
• Tuples are like immutable lists.

• They are immutable, i.e. you cannot change them once
they have been created.

• This allows us to use them as keys for a dictionary

Tuple Creation
• You create a tuple by putting a comma separated list of

items in parentheses

small_primes = (2,3,5,7,11,13)

digits = ("0", "1", "2", "3", "4", "5", "6", "7", "8", “9")

Accessing Elements
• You access tuple coordinates by using the same notation

as for lists

• prints out “5”

digits = ("0", "1", "2", "3", "4", "5", "6", "7", "8", "9")

print(digits[5])

Using Tuples: Tuple
Assignment

• Tuple assignment

• The “tuple operator” is the comma

• Meaning, putting commas between things creates a
tuple

• Tuples can be assigned

Using Tuples: Tuple
Assignment

• Tuple assignment

• The “tuple operator” is the comma

• Meaning, putting commas between things creates a tuple

• Tuples can be assigned as tuples

• Which assigns the elements of the tuple as well

• Example:

• Creates two tuples and makes them equal

• Result is a is 3 and b is 5

a, b = 3, 5

Using Tuples: Tuple
Assignment

• Tuple assignment makes it easy to switch values

• Assume that we have two variables

• We want them to exchange values

• Here is code that does not succeed:

• Spend some time figuring out why

a=3
b=5

#now we want to switch values
a=b
b=a
print(a,b) #prints 5 5

Using Tuples: Tuple
Assignment

• When we assign b=a, the old value of a has just be
overwritten

a=3
b=5

#now we want to switch values
a=b
b=a
print(a,b) #prints 5 5

Using Tuples: Tuple
Assignment

• We need to safeguard the value of a in a temporary
variable

• This is a well-known trap for beginners

• But now we have three assignments
a=3
b=5

#now we want to switch values
temp = a
a=b
b=temp
print(a,b) #prints 5 3

Using Tuples: Tuple
Assignment

• With tuples, this works much simpler

• The right side of the assignment is a tuple

• We assign it as a tuple to the left side

• Which then updates the values of a and b

a=3
b=5

#now we want to switch values
a,b = b,a
print(a,b) #prints 5 3

Using Tuples: Unpacking
• In general, you can unpack a tuple through an assignment

• On the left, you have a tuple with variables

• On the right, you have an established tuple

• This will load name, last_name, birth_year, … with the
values in caesar

• The number of elements on both sides of the
assignment needs to be the same

(name, last_name, birth_year, birth_month, birth_date) = caesar

Using Tuples: Unpacking
• You can even unpack when calling a function

• Put an asterisk before the tuple to cause the unpacking

• Define a function of two variables

• We call it in the usual way

• But we can also call it with a tuple

def geo_mean(a,b):
return (a*b)**(1/2)

print(geo_mean(4,7))

tp = (3,7)
print(geo_mean(*tp))

Using Tuples: Several
Return Values

• Assume that you want to return more than one value from
a function

• You can “kludge” it by return a list

• Then you access the various return values via indices

• You can return a tuple

• And use tuple unpacking at the other end

Using Tuples: Unpacking
• Several return values example

• Assume that you want to return the mean and the
standard deviation of a list of numbers

import math

def stats(lista):
 if not lista: #lista is empty
 return 0,0
 mean = 0
 var = 0
 for element in lista:
 mean += element
 for element in lista:
 var += (element-mean)**2
 return mean/len(lista), math.sqrt(var/len(lista))

Using Tuples: Unpacking
• This code returns a tuple

• If we call this function, we unpack in a single statement

def stats(lista):
…
return mean/len(lista), math.sqrt(var/len(lista))

mu, sigma = stats([12,23,12,12,14,12,13,16,29,11,12,13])

SETS

Sets
• Sets are unordered, iterable and mutable

• You can use a for loop on a set: for x in A:

• You can add and delete elements from a set

• Using the add and remove methods

• You define a set through the set keyword or by writing it
in curly brackets

Set Example
• Determine all the symbols in a string not in another

• Easiest with set notation

• Create a set for each string

• Use the set operation minus to get all elements in the
first set that are not in the second

• Return as a string

• Notice, sets are iterable

• This means that we can systematically walk
through a set, e.g. with a for loop

Set Example
def minus(string1, string2):
 my_set = set(string1)
 my_other = set(string2)
 return "".join(my_set - my_other)

>>> minus("adsfijroiupoqewiurp", "qwroiupsadf")
'je'

Create sets from
the strings

Use the minus
operation

Return the result
as a string

Frozen Sets
• Sets are mutable, so they cannot be keys for a dictionary

• If you want sets to be the keys in a dictionary, use the
frozen set instead.

