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Abstract 

 
P2P storage systems must protect data against temporary 
unavailability and the effects of churn in order to become 
platforms for safe storage.  This paper evaluates and 
compares redundancy techniques for P2P storage 
according to availability, accessibility, and maintainability 
using traces and theoretical results.  
 
 
1 Introduction and Related Work 
 

The initial wave of peer-to-peer (P2P) networks 
provided file-sharing and prompted the emergence of 
applications such as distributed internet storage [19, 13, 22] 
and internet backup [6, 16, 15]. P2P storage applications 
still need to handle the typical P2P problem of unreliable 
peers and of churn – the process of peers leaving and 
entering the system continuously.  In contrast to other P2P 
systems, P2P storage systems place even more emphasis on 
reliable data availability, but can be more selective in the 
peers that are used. Furthermore, the selected peers are 
usually connected by a high bandwidth network.  In this 
paper, we elide important P2P storage problems such as 
search, allocation, load distribution, and peer selection in 
favor of investigating the choice of a redundancy scheme 
that combines fast access, availability, and low costs of 
maintenance.  

To achieve the required level of data availability, we 
store data redundantly. We typically generate redundancy 
with an m/n code. These linear codes break an object into m 
equal-sized chunks and generate additional parity chunks to 
bring the total number of chunks to n.  Any m out of the n 
chunks suffice to reconstruct the object. Replication is 
formally a 1/n code.   

We can use a m/n code (m ≠ 1) in two different ways. 
First, erasure coding breaks a single object, such as a back-
up of part of a file system, into m chunks. In the second 
approach, bucketing, we take m objects of similar size and 
calculate additional n – m parity objects. Erasure coding 
must retrieve data from at least m different peers to 
construct our object. Bucketing needs to access only a single 
peer, the one with the complete copy. However, if that one 

is unavailable, it needs to access at least m other peers and 
transfer m times more data than the size of our object. In the 
following, we investigate replication, bucketing, erasure 
coding, and hybrid schemes, which combine replication 
with erasure coding and bucketing. 

  Several recent studies [2, 5, 20, 22] compare replication 
and erasure coding. Erasure coding wins over replication in 
terms of object availability with limited resources such as 
storage space [2, 22]. However, Rodrigues and Liskov [20] 
argue that access costs make erasure coding less attractive – 
a concern addressed by our hybrid schemes. Blake and 
Rodrigues [5] show that replacing copies on peers that have 
left the system poses a big burden for P2P systems.  Our 
focus is P2P storage with the underlying assumption that the 
selected peers are both reliable and connected by high-speed 
internet connections, which lessens the strength of the 
Blake-Rodrigues argument in this case.  

  Due to space considerations, we only measure the 
impact of churn on the maintenance of data in P2P storage 
in our traces. We refer the reader instead to the work of 
Datta and Aberer [9] as well as that of Godfrey et al. [12] 
for a more complete discussion of maintenance. 

 

 
Figure 1: Erasure Coding with primary copy (P), 

m=3, n=6 (C1-C6). 
 

2 Redundancy Schemes 
 

Data stored on unreliable servers is protected by 
redundancy. The simplest scheme is Replication (Rep) 
where we store the same object in n different locations.  
Simple Erasure Coding (EC) uses an m/n code. It breaks an 
object into m chunks and generates additional n – m parity 
chunks.  To access an item, we need only to gather any m 
chunks and decode. Churn, the constant joining and leaving 
of node in a P2P system, forces us to constantly replace data 
stored on lost peers somewhere else.  Using EC, we have to 
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access and read m surviving chunks, reconstruct the data, 
and generate replacement chunks.  To streamline this 
cumbersome process, we can store the original data 
elsewhere and generate replacement chunks preferably from 
it. Following Rodrigues and Liskov [20], we call this 
Erasure Coding with Primary Copy (EC/1P), (see Figure 1). 
Data accesses in EC/1P are also simpler since we can 
directly access the stored object. We also consider a scheme 
EC/2P where we mirror the primary copy. 

Bucketing (BUCK) attempts to combine the advantages 
of replication and EC without the disadvantages of an 
increased storage footprint. BUCK emulates a RAID Level 
6 reliability stripe, where each data item is stored in its 
entirety in a bucket and a peer holds one bucket.  A typical 
bucket contains several data items.  All buckets are roughly 
the same size.  Note that data buckets might not be 
completely filled. We group m data buckets into a reliability 
stripe and add to them k parity buckets (Figure 2). If 
possible, the data is accessed directly from the data bucket 
containing the item.  As any m data buckets in a reliability 
stripe are sufficient to reconstruct any data item, we can still 
satisfy requests to data stored on dead or unavailable peers 
and reconstruct lost buckets in the background. 

We also consider schemes where each data bucket is 
mirrored (BUCK/1R) or even triplicated (BUCK/2R). These 
hybrid schemes satisfy more reads in a single access. 

 
 

 
Figure 2: Bucketing, m = 3, n = 6. 

 

 
Figure 3: Bucketing with Replication. 

 
3 Theoretical Results 
 

In order to compare our schemes, we derive formulae for 
the stretch (the ratio of storage actually used over the size of 
the data stored) and the access costs in the case where peers 
are available with constant probability p.  We first calculate 
formulae for the availability of our data. Throughout, we use 
n for the group size, m for the number of peers necessary to 
recover data, and we abbreviate q = 1 – p. We also denote 
the cumulative binomial probability by  
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For comparison purposes, we select a high level of data 
availability and calculate the storage overhead as the stretch, 
defined to be the ratio of the size of storage used in order to 
provide this availability over the size of the user data items. 
We use our formulae to numerically determine the stretches 
for a data availability level of 99.99% (four nines) using m = 
7 for all schemes but replication (Figure 4). Certainly, other 
levels of availability such as two nines or five nines, could 
be presented in a longer paper. 

For ease of reading, the schemes appear in the same 
order within the legend as they do in the graph at high levels 
of availability. We observe the much larger stretch required 
by replication for low to medium peer availability. The 
hybrid schemes (EC/1P, EC/2P, BUCK/1R, BUCK/2R) 
converge to the space efficiency of EC and BUCK for low 
peer availability. However, the hybrid schemes follow the 
trend to the higher stretch of replication for higher peer 
availability. Always, BUCK has lower stretch than EC, 
mainly because we define our availability as the probability 
that a given object is available. If, for instance, only one 
bucket survives then the data in that bucket is considered 
available.  In EC, a single chunk is not sufficient to 
reconstruct data. For much lower object availability levels 
and very low peer availability, replication can provide better 
object availability than bucketing and chunking [17] for the 
same stretch. 

 
Table 1: Availability of a stored data item. 
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Figure 4: Stretches for various schemes. (m =7). 
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We now turn to modeling data accesses. As it would be 
impossible for us to give a complete taxonomy of data 
access organizations, we use two simple measurements. 
First, we measure the difficulty to locate peers from which 
to transfer data.  In a typical, P2P system based on 
Distributed Hash Tables (DHT) with N peers, clients can 
access a peer with a given ID in O(log N) hops. Rather than 
counting the hops, we just consider this one access, and then 
count the number of accesses (pings) it takes to locate 
enough peers to get the desired data.  We assume that the 
client will ping peers until it finds either a single peer that 
contains the data or enough peers to reconstruct it.  Our 
model presupposes that client peers cache the Internet 
Protocol (IP) addresses of their storage sites. The distributed 
hash table locates the storage peers only if the peer or peers 
at cached addresses do not respond or refuse to honor the 
request. While not valid in general (e.g. if a random walk 
strategy is used), we believe that our assumption is valid in 
P2P storage schemes.  Even if the assumption is wrong, our 
numbers still give a rough idea of the difficulties of 
accessing data for each scheme.  

Our second measure is the minimum amount of data that 
needs to be transferred to retrieve the data. (Some P2P 
systems are more profligate in their retrieval than others.) 
While replication and EC only download the requested data, 
this is not always true for Bucketing.  If a data bucket with 
the requested data is not available, then m complete buckets 
must be accessed and transferred in order to reconstruct the 
desired data.  

We now present the access costs associated with our 
various schemes.  As before, p stands for the probability of a 
peer being available, q is 1 – p, and m and n are the 
parameters of the erasure correcting code.  S is the expected 
number of pings. 

Replication searches for one replica after the other: 
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Erasure Coding (EC) uses exactly s pings if the first s−1 
pings provide m−1 available peers and the next access is 
successful.  The sole exception is s = n pings, which 
happens if we have not found m available peers in n−1 
trials. In this case, our data retrieval is either unsuccessful or 
uses all n peers in the reliability stripe. It appears that our 
formula cannot be simplified: 
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 In Erasure Coding with one primary copy (EC/1P) n 
peers store data chunks and an additional peer stores the 
primary copy.  We use one ping if the primary copy is 
available (with probability p).  Otherwise, (with probability 
q) we proceed, as with Erasure Coding, by looking for m 
available peers among n possible peers in the reliability 

stripe:  
)),,(1(1 ECEC/1P pmnSqpS +⋅+⋅=  

Similarly, if we duplicate the primary copy to be more 
likely to satisfy reads from that copy, then we use 1 ping, if 
the first primary copy is available (probability p), 2 pings, if 
the first one is down and the second is available (probability 
pq), and otherwise two more than with Erasure Coding 
(probability q2). 

2
ECEC/2P )),,(2(21 qpmnSqppS ⋅++⋅⋅+⋅=  

In Bucketing (BUCK), we access the data directly with 
probability p when the peer with the desired data is 
available.  Otherwise, we must collect data from m of the n 
− 1 remaining peers. 

SBUCK = 1·p + (1+SEC (n−1,m,p))·q 
An exact expression for S for Bucketing with 

Replication is difficult to derive because of the accounting 
for replicas of data buckets.  Merely being able to find m 
available peers is not sufficient, because sometimes a peer 
carries redundant user data items that do not contribute to 
the ability to reconstruct data.  We achieve our numerical 
results in this case using an upper and a lower bound, 
separated by at most 2%. 
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Figure 5: Access cost in pings for various 
schemes 

We show the numerical results in Figure 5 for 99.99% 
data availability.  With perfect peer availability, all schemes 
require a single ping to access data, except EC, that requires 
m pings. Not surprisingly, replication requires the least 
number of pings and erasure coding the most. The addition 
of primary copies to erasure coding (EC/1P, EC/2P) 
dramatically improves ping performance. In fact, for very 
high levels of peer availability (90%), their performance 
almost equals that of replication. BUCK and EC/1P and 
BUCK/1P and EC/2P have almost identical ping 
performance. 
 



 
Figure 6: Data transfer overhead  

 
Figure 6 highlights the disadvantage of bucketing 

schemes, which must fetch additional and unrelated data to 
reconstruct the requested data. The x-axis gives peer 
availability, while the y-axis gives the amount of data 
transferred. We see that with BUCK/2R these additional 
transfers are small (<10%) for peer availability levels 
greater than 75%. However, if peers are only available 20% 
of the time, then BUCK transfers almost six times more data 
than REP or any of the EP schemes. 

 
4 Experimental Evaluation and Simulation  
 

Of course, our analytic models cannot accurately reflect 
the variety and diversity of peer availability in an actual P2P 
system.    We therefore used traces extracted from live P2P 
systems to evaluate the efficacy of the various schemes.  We 
again chose a data availability level of 4 nines, then 
determined the necessary stretch and access costs associated 
with each scheme.   

A P2P storage scheme must recognize and replace 
under-performing peers as well as peers that have 
permanently left the system. Timeouts are a simple and 
proven approach.  A peer currently storing data that has 
been unavailable for a period T – the time-out value – is 
replaced by a random available peer. Incidentally, we have 
experimented with more sophisticated replacement and 
selection algorithms, and our results confirm others [10,12] 
that random replacement is a good strategy.  We consider 
here only this simple time-out scheme with three levels of T. 

We model a static scheme by using an infinite timeout 
level, T = ∞.  Timeout level T = 1 hour is clearly aggressive 
and replaces any peer not responding within a single time 
period.  Timeout level T = 24 hours was intended to 
represent a real world case where a peer would be 
unavailable for many time periods before replacement.   

Our evaluation used different traces from Godfrey’s 
collection. The first one is Farsite, which gives the 

availability of 51,663 desktop PCs within Microsoft for 35 
days beginning July 6, 1999 [1, 10]. The overall average 
availability for the Farsite network was approximately 81% 
with 9% of all peers being available for the entire trace. The 
second trace, Overnet, collected the availability of 2400 
peers in the Overnet P2P system gathered during a 
membership crawl over a 7 day period [3].  The overall 
average uptime for the Overnet network is approximately 
15% with none of the hosts being available for the entire 
trace.  

We report our results for an availability level of 99.99% 
(four nines). We note that our experiments for 99% (two 
nines) did not lead us to different conclusions. We first 
compare simulated and theoretical expected values for 
stretch using the Farsite traces in Table 2.  Here, we chose 
m=7 and 4 nines of availability for different timeouts. The 
experimental values are consistently less than those 
predicted by the formulae, even though a model with time-
out value ∞=T should be accurate. 

The discrepancy has a simple explanation: Peers  are not 
independent with respect to availability.  In the Farsite trace, 
for example, peer availability is highest during the day and 
lowest during nights and weekends.  Secondly, as is well-
known [3, 18, 21], random replacement of failed peers by 
currently available peers tends to select peers with higher 
availability over time. As a result, the availability of peers 
actually used in our scheme is on average higher than the 
general population. 

 
Table 2: Simulated vs. Theoretical Stretch (Farsite) 

 
Scheme T=1 T=24 T=∞ Theoretical 

REP 2.00 3.00 4.00 6.00 

EC 1.43 1.72 2.15 2.42 

EC/1P 2.15 2.43 2.91 3.14 

EC/2P 3.00 3.29 3.72 4.00 

Buck 1.29 1.58 2.00 2.28 

Buck/1P 2.15 2.29 2.58 3.14 

Buck/2P 3.00 3.15 3.29 3.85 

 
4.1 Churn Costs 

 
Churn, the data movement caused by replacing peers that 

have timed out and are thus considered unavailable, is 
difficult to model analytically. Even if we were to assume a 
completely homogenous set of peers, churn costs depend on 
the frequency of peers changing state from unavailable to 
available and the timeout value.  While it is possible to 
model the steady state for a homogeneous set of peers, we 
doubt its applicability to practical systems.  Therefore, we 
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used the traces of P2P systems to evaluate churn. We 
measure churn as the total amount of data transferred per 
hour normalized against the total amount of user data.   A 
churn of 0.1 thus signifies that on average, we move 10% of 
the user-stored data around the network in order to maintain 
the current state. 

Figure 7: Effect of Stretch and Churn in Farsite and 
Overnet 

Figure 7 shows stretch and churn cost in Farsite and 
Overnet for the various schemes.  Farsite only needs two 
replicas in the replication scheme at the aggressive timeout 
value 1. The two primary copies in EC/2P and the 
triplication of data buckets in BUCK/2R are overkill and 
these schemes far exceed our availability threshold of 
99.99%.  EC/1P has a slightly worse stretch than REP, but 
this is because the minimum configuration, one primary 
copy and 7 chunks, just misses the availability mark of 
99.99%. All bucketing schemes cause considerably more 

churn.  Since Farsite peers are highly available, we typically 
only have to replace data on a single peer.  EC/1P and 
EC/2P deal best with this situation. If the primary copies 
have survived, we generate a new chunk from the primary 
and send it to the replacement peer for a cost of 1/m.  
Replacing a peer in BUCK is done at one of the surviving 
buckets, we read m–1 other buckets and write to the 
replacement peer, for a total transfer cost of m times the 
contents of the bucket. Consequentially, BUCK and its 
variants have considerably more churn costs in both traces. 

As expected, the Overnet trace, Figure 7, with relatively 
low peer availability, had considerably higher stretch and 
churn than Farsite. An aggressive timeout and replacement 
policies force early replacements of typically a single peer. 
As before, EC/1P and EC/2P have the least amount of churn 
cost.  REP and EC, as before, have slightly higher churn 
costs and BUCK and its variants fares more poorly. The 
cost of churn should diminish as replacement picks more 
highly available peers.   

 
Table 3: Churn Costs in Overnet and Farsite, First 

and Last Quintile, Timeouts 1hr and 24 hrs 
 

 Farsite Overnet 

Scheme T=1 T=24 T=1 T=24 

BUCK 1st quint. 0.0336 0.0058 0.1474 0.0069 

BUCK 5th quint. 0.0198 0.0027 0.1302 0.0095 

BUCK/1R 1st q. 0.0329 0.0058 0.1424 0.0069 

BUCK/1R 5th  q. 0.0196 0.0027 0.1273 0.0096 

BUCK/2R 1st q. 0.0324 0.0059 0.1358 0.0068 

BUCK/2R 5th q. 0.0192 0.0028 0.1219 0.0096 

EC 1st quintile 0.0048 0.0008 0.0202 0.0009 

EC 5th quintile 0.0028 0.0004 0.0180 0.0014 

EC/1P 1st quint. 0.0005 0.0001 0.0049 0.0005 

EC/1P 5th quint. 0.0003 0.0000 0.0039 0.0008 

EC/2P 1st quint. 0.0011 0.0002 0.0039 0.0003 

EC/2P 5th quint. 0.0006 0.0001 0.0033 0.0004 

REP 1st quintile 0.0049 0.0008 0.0245 0.0011 

REP 5th quintile 0.0029 0.0004 0.0211 0.0014 

 
Table 3 contrasts the churn costs in the first and the last 

quintile of the trace. We obtained these values with 10,000 
runs. We notice the beneficial effects of increasing the 
timeout. We also notice that Overnet churn costs increase 
from the first quintile to the last when using T = 24, mainly 



because the timeout value (1 day) is so close to one fifth the 
length of the trace (of 7 days). This problem is endemic to 
using timeout schemes on finite traces.  Just as a cold cache 
has mandatory misses, so our timeout scheme can only 
replace underperforming peers after a warm-up period. 
 

 
Figure 8: Effect of Stretch and Access in Overnet 

 
4.2 Access Costs 

 
Recall that we distinguish two access costs, the number 

of pings to find the data and the amount of data that needs to 
be transferred. Recall also that measuring access costs in 
pings should be valid in a P2P storage system, but is 
meaningless for some P2P systems. Only Bucketing 
transfers a larger amount than the requested piece of data, 
and this only if the peer(s) storing the entire data item are 
unavailable.  We use the number of pings as a measure of 
the latency users will experience before they start receiving 
data. 

Figure 8 shows the stretch and access cost (number of 
pings) for Overnet.  The EC scheme is not shown because 
its access cost is so much greater than the others (about 8 
under these conditions). The access cost of EC is so high 
because no single peer can supply the entire data item. 

 
4.3 Sensitivity  
 

Tables 4 and Figure 9 show the influence of the choice 
of the time-out parameter. In related, unpublished work, the 
authors found that more sophisticated selection mechanisms 
than randomly picking an available peer as a replacement 
can improve the availability of the selected peers over time, 
but that the improvement is rarely over 20% in availability. 
Similarly, the choice of the erasure coding parameter m also 
influences stretch and churn costs but the effect is also less 

pronounced. 
 
Table 4: Complete Overnet and Farsite stretch 

results 
 

  Overnet Farsite 
Scheme T-out m=4 m=7 m=12 m=4 m=7 m=12 

1 5 5 5 2 2 2 
24 12 12 12 3 3 3 

REP 

∞ 21 21 21 4 4 4 
1 2.75 2.15 1.92 1.5 1.29 1.25 

24 5.71 4.43 3.67 2 1.58 1.42 
BUCK 

∞ 9.25 7.29 6 2.5 2 1.81 
1 3 2.58 2.42 2.25 2.15 2.09 

24 5.75 4.58 3.92 2.5 2.29 2.17 
BUCK 
/1P 

∞ 9.5 7.29 6.09 2.75 2.58 2.34 
1 3.5 3.29 3.25 3 3 3 

24 6 5 4.42 3.25 3.15 3.09 
BUCK 
/2P 

∞ 9.5 7.58 6.34 3.5 3.29 3.17 
1 2.75 2.29 1.92 1.5 1.43 1.25 

24 5.75 4.43 3.75 2 1.72 1.5 
EC 

∞ 9.25 7.29 6 2.5 2.15 1.84 
1 3.5 3.15 2.84 2.25 2.15 2.11 

24 6.5 5.41 4.67 2.71 2.43 2.34 
EC/1P 

∞ 10 8.15 6.84 3.25 2.91 2.67 
1 4 3.86 3.67 3 3 3 

24 7.25 6.15 5.5 3.5 3.29 3.25 
EC/2P 

∞ 10.75 8.91 7.75 4 3.72 3.51 
 

 
Figure 9: Effect of Timeout in Overnet 

 
4.4 Improving Bucketing 
 

Lazy peer replacement lowers the costs of churn.  As 
bucketing has higher churn costs, we experimented with an 
“improved” version of bucketing (BUIM), where we add m 
additional parity peers to a reliability stripe.  We only 
replace data on lost parity peers if m or more peers need to 
be replaced.  This bulk replacement lowers the data transfer 
overhead that the original bucketing scheme incurs. Recall 



that if we reconstruct a single peer, we access m peers, but 
also have to transfer m times the amount of data stored on a 
peer. Table 5 shows that the increased stretch of BUIM with 
mirrored or triplicated data peers pays off in significantly 
lowered churn costs, about a factor of 10 in both Overnet 
and Farsite. 
 
4.5 Summary 
 

When assessing our various schemes, we observed that 
Replication has the lowest maintenance costs and is 
conceptually the simplest scheme.  However, only with high 
peer availability was its stretch comparable to other 
schemes.  Bucketing and Erasure Coding have much lower 
stretch, with the advantage going to Bucketing when using 
highly available peers.  In general, Bucketing has the 
highest churn cost and Erasure Coding the highest access 
cost.  

 
 

Table 5: Churn Costs in Overnet and Farsite, First 
and Last Quintile, Timeouts 1hr and 24 hrs 

 
 Farsite Overnet 

Scheme T=1 T=24 T=1 T=24 

BUCK/1R 1st 0.0329 0.0058 0.1424 0.0069 

BUCK/1R 5th  0.0196 0.0027 0.1273 0.0096 

BUIM/1R 1st  0.0033 0.0005 0.0141 0.0002 

BUIM/1R 5th  0.0019 0.0002 0.0133 0.0003 

BUCK/2R 1st 0.0324 0.0059 0.1358 0.0068 

BUCK/2R 5th 0.0192 0.0028 0.1219 0.0096 

BUIM/2R 1st  0.0037 0.0006 0.0183 0.0005 

BUIM/2R 5th  0.0022 0.0003 0.0165 0.0007 

 
Not surprisingly, we observe that combining replication 

with either Bucketing or Erasure Coding lowers the access 
cost considerably because a complete copy of the data is 
usually available from a single peer. Our “improved” hybrid 
bucketing schemes (Table 5) present a further performance 
compromise. It trades higher stretch than hybrid Erasure 
Coding for easier access and almost the low churn costs of 
hybrid Erasure Coding. 
 
5 Conclusions 
 

Replication is simple and offers good performance, but 
its stretch is reasonable only for very highly available peers.  
More complex schemes are worth considering when peers 

exhibit lower availability as in the traces of Farsite and 
Overnet. Fault-free software for distributed systems is 
difficult to produce and we caution against adding too much 
complexity. The most complicated part of a P2P storage 
scheme implementation lies in the addressing scheme, the 
monitoring of the peers and the selection of replacement 
peers, i.e., the handling of churn. An improved redundancy 
scheme does not require a significant amount of added 
complexity. Linear Erasure Coding schemes are well known 
and can be implemented in a separate module. The 
complexity of updating data (and parity) in any scheme 
depends on the guarantees given about when the change of 
data becomes visible to all users. This is a well-known, 
difficult, but solved problem in distributed systems and 
well-studied in the literature.  The added complexity of 
Erasure Coding or Bucketing is small in comparison.   

In short, we believe that implementing pure erasure 
coding and bucketing impose rather high maintenance costs 
(churn) and access costs, even for relatively highly available 
peers.  As a consequence, we advise the use of hybrid 
schemes that combine data Replication with either Erasure 
Coding or Bucketing.  A hybrid scheme achieves reasonably 
good performance because it typically accesses data items 
directly (i.e. it uses Replication for both maintenance and 
data access) and achieves very high data availability at a 
reasonable stretch level because it uses the more space 
efficient methods of Erasure Coding or Bucketing to 
increase the data availability level.  Our experiments with 
traces of P2P systems confirm these conclusions.  
Additionally, we can reduce the costs of churn in Bucketing 
by being smart about maintenance, creating proactively 
“spare” parity buckets so that we can perform bulk 
maintenance operations less often. 

In the larger picture, our work addresses to some extent 
the concerns of the work of Blake and Rodrigues [5]. As we 
have seen, churn costs are manageable in our environment, 
mainly because our replacement mechanism selects peers 
with higher availability with good network bandwidth. We 
achieve scalability, because reliability groups are 
autonomous. This leaves the problem of locating the data, 
something that this paper could not address. 

In conclusion, our results lead us to recommend the use 
of replication to obtain simple data access most of the time, 
but to use additional erasure-code-generated parity to 
achieve the last nines in the desired availability level.  While 
we can tolerate the observed churn in a P2P storage 
environment, lazy and proactive techniques to reduce churn 
are advisable.  However, in this paper, we did not study the 
efficacy of these schemes again. Our results suggest a P2P 
storage system with reasonable maintenance costs, fast 
access time, desired high availability, and reasonable 
storage overhead from peers with a much smaller 
availability level. 



REFERENCES 
 
[1] A. Adya, W. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. 
Douceur, J. Howell, J. Lorch, M. Theimer, R.. Wattenhofer: 
FARSITE: federated, available, and reliable storage for an 
incompletely trusted environment. 5th Symposium on Operating 
Systems Design and Implementation (OSDI),  2002. 

[2] R. Bhagwan, D. Moore, S. Savage, G. Voelker: Replication 
strategies for highly available peer-to-peer storage.  Future 
Directions in Distributed Computing (FuDiCO), 2002. 

[3] R. Bhagwan, S. Savage, G. Voelker: Understanding 
Availability. 2nd International Workshop on Peer-to-Peer Systems 
(IPTPS '03). Peer-to-Peer Systems II, Springer, Lecture notes in 
computer science vol 2735, pp 256-267.  

[4] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, G. Voelker: 
Total Recall: System Support for Automated Availability 
Management. Proceedings of the first Symposium on Networked 
Systems Design and Implementation (NSDI), Mar. 2004. 

[5] C. Blake, R. Rodrigues: High availability, scalable storage, 
dynamic peer networks: pick two. Proceedings of the 9th 
Workshop on Hot Topics in Operating Systems (HotOS-IX), 
Lihue, Hawaii, 2003.  

[6] L. P. Cox, C. Murray, B. Noble: Pastiche: Making backup 
cheap and easy. In 5th Symposium on Operating Systems Design 
and Implementation (OSDI), 2002.  

[7] B. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon, 
M. Kaashoek, J. Kubiatowicz, R. Morris: Efficient replica 
maintenance for distributed storage systems. Proceedings, 3rd 
USENIX Symposium on Networked Systems Design and 
Implementation (NSDI '06), 2006. 

[8] E. Cohen, S. Shenker: Replication strategies in unstructured 
peer-to-peer networks. ACM SIGCOMM Computer 
Communication Review, vol. 32(4), October 2002. 

[9] A. Datta, K. Aberer: Internet-Scale Storage Systems under 
Churn – A Study of the Steady-State Using Markov Models. 6th 
International Conference on Peer-to-Peer Computing, (P2P’06), 
2006. 

[10] J. Douceur, R. Wattenhofer: Optimizing file availability in a 
secure peerless distributed file system.  Proceedings of 20th IEEE 
Symposium on Reliable Distributed Systems (SRDS), 2001, pp. 4-
13. 

[11] Brighten Godfrey: Repository of Availability Traces. 

www.cs.berkeley.edu/~pbg/availability/ 

[12] P. Godfrey, S. Shenker, I. Stoica: Minimizing Churn in 
Distributed Systems, Proceedings of SIGCOMM, 2006.  

[13] S. Hand and T. Roscoe: Mnemosyne: Peer-to-Peer 
Steganographic Storage. Proceedings 1st International Workshop 
on Peer-to-Peer Systems (IPTPS '02). 2003.  

[14]  L. Hellerstein, G. Gibson, R. Karp, R. Katz, D. Patterson: 
Coding techniques for handling failures in large disk arrays. 
Algorithmica, 12:182-208, 1994. 

[15] J. Li, F. Dabek: F2F: Reliable Storage in Open Networks. 
Proceedings, 5th International Workshop on Peer-To-Peer 
Systems. 2006. 

[16] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, M. Isard: 
A cooperative internet backup scheme. In Proceedings of the 2003 
Usenix Annual Technical Conference, pp. 29-41, San Antonio, 
Texas, June 2003. 

[17] W. Lin, D. Chiu, Y. Lee: Erasure Code Replication Revisited, 
Proc. 4th International Conference on Peer-to-Peer Computing 
(P2P’04).   

[18] R. Mahajan, M.l Castro, A. Rowstron: Controlling the Cost of 
Reliability in Peer-to-Peer Overlays. 2nd International Workshop 
on Peer-to-Peer Systems (IPTPS '03), 2003. Peer-to-Peer Systems 
II, Springer, Lecture notes in computer science vol. 2735. 

[19] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. 
Weatherspoon, J. Kubiatowicz:  Maintenance-Free Global Data 
Storage, IEEE Internet Computing, Vol. 5(5), September/October 
2001, pp 40-49. 

[20] R. Rodrigues, B. Liskov: High Availability in DHTs: Erasure 
Coding vs. Replication.  4th International Workshop on Peer-to-
Peer Systems (IPTPS'05). Ithaca, New York, USA. February 2005. 

[21] E. Sit, A. Haeberlen, F. Dabek, B. Chun, H. Weatherspoon, R. 
Morris, M. . Kaashoek, and J. Kubiatowicz. Proactive replication 
for data durability. Proceedings of the Fifth International 
Workshop on Peer-to-Peer Systems (IPTPS '06), February 2006 

[22] H. Weatherspoon and J. Kubiatowicz: Erasure coding vs. 
replication: A quantitative comparison. Proceedings of the 1st 
International Workshop on Peer-to-Peer Systems (IPTPS 2002), 
March 2002. 

[23] B. Zhao, L. Huang, J. Stribling, S.. Rhea, A. Joseph, J. 
Kubiatowicz:  Tapestry: A Resilient Global-scale Overlay for 
Service Deployment. IEEE Journal on Selected Areas in 
Communications, Vol 22(1), January 2004

 


