
Redundancy Management for P2P Storage

Chris Williams, Philippe Huibonhoa, JoAnne Holliday, Andy Hospodor, Thomas Schwarz
Department of Computer Engineering,

Santa Clara University, Santa Clara, CA 95053, USA
phuibonhoa@gmail.com; chris-williams@comcast.net;

 [jholliday ,ahospodor, tjschwarz]@scu.edu

Abstract

P2P storage systems must protect data against temporary
unavailability and the effects of churn in order to become
platforms for safe storage. This paper evaluates and
compares redundancy techniques for P2P storage
according to availability, accessibility, and maintainability
using traces and theoretical results.

1 Introduction and Related Work

The initial wave of peer-to-peer (P2P) networks
provided file-sharing and prompted the emergence of
applications such as distributed internet storage [19, 13, 22]
and internet backup [6, 16, 15]. P2P storage applications
still need to handle the typical P2P problem of unreliable
peers and of churn – the process of peers leaving and
entering the system continuously. In contrast to other P2P
systems, P2P storage systems place even more emphasis on
reliable data availability, but can be more selective in the
peers that are used. Furthermore, the selected peers are
usually connected by a high bandwidth network. In this
paper, we elide important P2P storage problems such as
search, allocation, load distribution, and peer selection in
favor of investigating the choice of a redundancy scheme
that combines fast access, availability, and low costs of
maintenance.

To achieve the required level of data availability, we
store data redundantly. We typically generate redundancy
with an m/n code. These linear codes break an object into m
equal-sized chunks and generate additional parity chunks to
bring the total number of chunks to n. Any m out of the n
chunks suffice to reconstruct the object. Replication is
formally a 1/n code.

We can use a m/n code (m ≠ 1) in two different ways.
First, erasure coding breaks a single object, such as a back-
up of part of a file system, into m chunks. In the second
approach, bucketing, we take m objects of similar size and
calculate additional n – m parity objects. Erasure coding
must retrieve data from at least m different peers to
construct our object. Bucketing needs to access only a single
peer, the one with the complete copy. However, if that one

is unavailable, it needs to access at least m other peers and
transfer m times more data than the size of our object. In the
following, we investigate replication, bucketing, erasure
coding, and hybrid schemes, which combine replication
with erasure coding and bucketing.

 Several recent studies [2, 5, 20, 22] compare replication
and erasure coding. Erasure coding wins over replication in
terms of object availability with limited resources such as
storage space [2, 22]. However, Rodrigues and Liskov [20]
argue that access costs make erasure coding less attractive –
a concern addressed by our hybrid schemes. Blake and
Rodrigues [5] show that replacing copies on peers that have
left the system poses a big burden for P2P systems. Our
focus is P2P storage with the underlying assumption that the
selected peers are both reliable and connected by high-speed
internet connections, which lessens the strength of the
Blake-Rodrigues argument in this case.

 Due to space considerations, we only measure the
impact of churn on the maintenance of data in P2P storage
in our traces. We refer the reader instead to the work of
Datta and Aberer [9] as well as that of Godfrey et al. [12]
for a more complete discussion of maintenance.

Figure 1: Erasure Coding with primary copy (P),

m=3, n=6 (C1-C6).

2 Redundancy Schemes

Data stored on unreliable servers is protected by
redundancy. The simplest scheme is Replication (Rep)
where we store the same object in n different locations.
Simple Erasure Coding (EC) uses an m/n code. It breaks an
object into m chunks and generates additional n – m parity
chunks. To access an item, we need only to gather any m
chunks and decode. Churn, the constant joining and leaving
of node in a P2P system, forces us to constantly replace data
stored on lost peers somewhere else. Using EC, we have to

P

C1 C2 C3 C4 C5 C6

access and read m surviving chunks, reconstruct the data,
and generate replacement chunks. To streamline this
cumbersome process, we can store the original data
elsewhere and generate replacement chunks preferably from
it. Following Rodrigues and Liskov [20], we call this
Erasure Coding with Primary Copy (EC/1P), (see Figure 1).
Data accesses in EC/1P are also simpler since we can
directly access the stored object. We also consider a scheme
EC/2P where we mirror the primary copy.

Bucketing (BUCK) attempts to combine the advantages
of replication and EC without the disadvantages of an
increased storage footprint. BUCK emulates a RAID Level
6 reliability stripe, where each data item is stored in its
entirety in a bucket and a peer holds one bucket. A typical
bucket contains several data items. All buckets are roughly
the same size. Note that data buckets might not be
completely filled. We group m data buckets into a reliability
stripe and add to them k parity buckets (Figure 2). If
possible, the data is accessed directly from the data bucket
containing the item. As any m data buckets in a reliability
stripe are sufficient to reconstruct any data item, we can still
satisfy requests to data stored on dead or unavailable peers
and reconstruct lost buckets in the background.

We also consider schemes where each data bucket is
mirrored (BUCK/1R) or even triplicated (BUCK/2R). These
hybrid schemes satisfy more reads in a single access.

Figure 2: Bucketing, m = 3, n = 6.

Figure 3: Bucketing with Replication.

3 Theoretical Results

In order to compare our schemes, we derive formulae for
the stretch (the ratio of storage actually used over the size of
the data stored) and the access costs in the case where peers
are available with constant probability p. We first calculate
formulae for the availability of our data. Throughout, we use
n for the group size, m for the number of peers necessary to
recover data, and we abbreviate q = 1 – p. We also denote
the cumulative binomial probability by

n

(, ,) = n

m

n
B m n p p qν ν

ν ν
−

=

 
 
 

∑

For comparison purposes, we select a high level of data
availability and calculate the storage overhead as the stretch,
defined to be the ratio of the size of storage used in order to
provide this availability over the size of the user data items.
We use our formulae to numerically determine the stretches
for a data availability level of 99.99% (four nines) using m =
7 for all schemes but replication (Figure 4). Certainly, other
levels of availability such as two nines or five nines, could
be presented in a longer paper.

For ease of reading, the schemes appear in the same
order within the legend as they do in the graph at high levels
of availability. We observe the much larger stretch required
by replication for low to medium peer availability. The
hybrid schemes (EC/1P, EC/2P, BUCK/1R, BUCK/2R)
converge to the space efficiency of EC and BUCK for low
peer availability. However, the hybrid schemes follow the
trend to the higher stretch of replication for higher peer
availability. Always, BUCK has lower stretch than EC,
mainly because we define our availability as the probability
that a given object is available. If, for instance, only one
bucket survives then the data in that bucket is considered
available. In EC, a single chunk is not sufficient to
reconstruct data. For much lower object availability levels
and very low peer availability, replication can provide better
object availability than bucketing and chunking [17] for the
same stretch.

Table 1: Availability of a stored data item.

REP nq−1
EC),,(pnmB
EC/1P,2P),,(1(1 pnmBql −⋅−
BUCK)),1,(1(1 pnmBq −−−
BUCK/1P,2P)),,,1,(1(1 pllmnmmDql −−−−

Stretch necessary to achieve
 99.99% Data Availability

0

5

10

15

20

0.2 0.4 0.6 0.8 1

Peer Availability

Stretch

REP
EC/2P
BUCK/2R
EC/1P
BUCK/1R
EC
BUCK

Figure 4: Stretches for various schemes. (m =7).

P1 P2 P3D2 D3 D1’ D2’ D3’ D1

D1 D2 D3 P1 P2 P3

We now turn to modeling data accesses. As it would be
impossible for us to give a complete taxonomy of data
access organizations, we use two simple measurements.
First, we measure the difficulty to locate peers from which
to transfer data. In a typical, P2P system based on
Distributed Hash Tables (DHT) with N peers, clients can
access a peer with a given ID in O(log N) hops. Rather than
counting the hops, we just consider this one access, and then
count the number of accesses (pings) it takes to locate
enough peers to get the desired data. We assume that the
client will ping peers until it finds either a single peer that
contains the data or enough peers to reconstruct it. Our
model presupposes that client peers cache the Internet
Protocol (IP) addresses of their storage sites. The distributed
hash table locates the storage peers only if the peer or peers
at cached addresses do not respond or refuse to honor the
request. While not valid in general (e.g. if a random walk
strategy is used), we believe that our assumption is valid in
P2P storage schemes. Even if the assumption is wrong, our
numbers still give a rough idea of the difficulties of
accessing data for each scheme.

Our second measure is the minimum amount of data that
needs to be transferred to retrieve the data. (Some P2P
systems are more profligate in their retrieval than others.)
While replication and EC only download the requested data,
this is not always true for Bucketing. If a data bucket with
the requested data is not available, then m complete buckets
must be accessed and transferred in order to reconstruct the
desired data.

We now present the access costs associated with our
various schemes. As before, p stands for the probability of a
peer being available, q is 1 – p, and m and n are the
parameters of the erasure correcting code. S is the expected
number of pings.

Replication searches for one replica after the other:

p
qnqpqnpqqppS

n
nn −=+−+++= −− 1)1(32 122

Repl …

Erasure Coding (EC) uses exactly s pings if the first s−1
pings provide m−1 available peers and the next access is
successful. The sole exception is s = n pings, which
happens if we have not found m available peers in n−1
trials. In this case, our data retrieval is either unsuccessful or
uses all n peers in the reliability stripe. It appears that our
formula cannot be simplified:

))),1,(1(
1
1

),,(
1

EC pnmBnqp
m

pmnS mm
n

m
−−+








−
−

= −
−

=
∑ µ

µ

µ
µ

 In Erasure Coding with one primary copy (EC/1P) n
peers store data chunks and an additional peer stores the
primary copy. We use one ping if the primary copy is
available (with probability p). Otherwise, (with probability
q) we proceed, as with Erasure Coding, by looking for m
available peers among n possible peers in the reliability

stripe:
)),,(1(1 ECEC/1P pmnSqpS +⋅+⋅=

Similarly, if we duplicate the primary copy to be more
likely to satisfy reads from that copy, then we use 1 ping, if
the first primary copy is available (probability p), 2 pings, if
the first one is down and the second is available (probability
pq), and otherwise two more than with Erasure Coding
(probability q2).

2
ECEC/2P)),,(2(21 qpmnSqppS ⋅++⋅⋅+⋅=

In Bucketing (BUCK), we access the data directly with
probability p when the peer with the desired data is
available. Otherwise, we must collect data from m of the n
− 1 remaining peers.

SBUCK = 1·p + (1+SEC (n−1,m,p))·q
An exact expression for S for Bucketing with

Replication is difficult to derive because of the accounting
for replicas of data buckets. Merely being able to find m
available peers is not sufficient, because sometimes a peer
carries redundant user data items that do not contribute to
the ability to reconstruct data. We achieve our numerical
results in this case using an upper and a lower bound,
separated by at most 2%.

0

5

10

15

20

25

30

35

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

peer availability

EC

Replication

Buck/2R

Buck/1R ≈EC/2P

Buck ≈EC/1P

Pings

Figure 5: Access cost in pings for various
schemes

We show the numerical results in Figure 5 for 99.99%
data availability. With perfect peer availability, all schemes
require a single ping to access data, except EC, that requires
m pings. Not surprisingly, replication requires the least
number of pings and erasure coding the most. The addition
of primary copies to erasure coding (EC/1P, EC/2P)
dramatically improves ping performance. In fact, for very
high levels of peer availability (90%), their performance
almost equals that of replication. BUCK and EC/1P and
BUCK/1P and EC/2P have almost identical ping
performance.

Figure 6: Data transfer overhead

Figure 6 highlights the disadvantage of bucketing

schemes, which must fetch additional and unrelated data to
reconstruct the requested data. The x-axis gives peer
availability, while the y-axis gives the amount of data
transferred. We see that with BUCK/2R these additional
transfers are small (<10%) for peer availability levels
greater than 75%. However, if peers are only available 20%
of the time, then BUCK transfers almost six times more data
than REP or any of the EP schemes.

4 Experimental Evaluation and Simulation

Of course, our analytic models cannot accurately reflect
the variety and diversity of peer availability in an actual P2P
system. We therefore used traces extracted from live P2P
systems to evaluate the efficacy of the various schemes. We
again chose a data availability level of 4 nines, then
determined the necessary stretch and access costs associated
with each scheme.

A P2P storage scheme must recognize and replace
under-performing peers as well as peers that have
permanently left the system. Timeouts are a simple and
proven approach. A peer currently storing data that has
been unavailable for a period T – the time-out value – is
replaced by a random available peer. Incidentally, we have
experimented with more sophisticated replacement and
selection algorithms, and our results confirm others [10,12]
that random replacement is a good strategy. We consider
here only this simple time-out scheme with three levels of T.

We model a static scheme by using an infinite timeout
level, T = ∞. Timeout level T = 1 hour is clearly aggressive
and replaces any peer not responding within a single time
period. Timeout level T = 24 hours was intended to
represent a real world case where a peer would be
unavailable for many time periods before replacement.

Our evaluation used different traces from Godfrey’s
collection. The first one is Farsite, which gives the

availability of 51,663 desktop PCs within Microsoft for 35
days beginning July 6, 1999 [1, 10]. The overall average
availability for the Farsite network was approximately 81%
with 9% of all peers being available for the entire trace. The
second trace, Overnet, collected the availability of 2400
peers in the Overnet P2P system gathered during a
membership crawl over a 7 day period [3]. The overall
average uptime for the Overnet network is approximately
15% with none of the hosts being available for the entire
trace.

We report our results for an availability level of 99.99%
(four nines). We note that our experiments for 99% (two
nines) did not lead us to different conclusions. We first
compare simulated and theoretical expected values for
stretch using the Farsite traces in Table 2. Here, we chose
m=7 and 4 nines of availability for different timeouts. The
experimental values are consistently less than those
predicted by the formulae, even though a model with time-
out value ∞=T should be accurate.

The discrepancy has a simple explanation: Peers are not
independent with respect to availability. In the Farsite trace,
for example, peer availability is highest during the day and
lowest during nights and weekends. Secondly, as is well-
known [3, 18, 21], random replacement of failed peers by
currently available peers tends to select peers with higher
availability over time. As a result, the availability of peers
actually used in our scheme is on average higher than the
general population.

Table 2: Simulated vs. Theoretical Stretch (Farsite)

Scheme T=1 T=24 T=∞ Theoretical

REP 2.00 3.00 4.00 6.00

EC 1.43 1.72 2.15 2.42

EC/1P 2.15 2.43 2.91 3.14

EC/2P 3.00 3.29 3.72 4.00

Buck 1.29 1.58 2.00 2.28

Buck/1P 2.15 2.29 2.58 3.14

Buck/2P 3.00 3.15 3.29 3.85

4.1 Churn Costs

Churn, the data movement caused by replacing peers that

have timed out and are thus considered unavailable, is
difficult to model analytically. Even if we were to assume a
completely homogenous set of peers, churn costs depend on
the frequency of peers changing state from unavailable to
available and the timeout value. While it is possible to
model the steady state for a homogeneous set of peers, we
doubt its applicability to practical systems. Therefore, we

0

1

2

3

4

5

6

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BUCK
BUCK/1P

BUCK/2
P

REP, EC, EC/1P, EC/2P peer availability

Amount of
data
transferred

used the traces of P2P systems to evaluate churn. We
measure churn as the total amount of data transferred per
hour normalized against the total amount of user data. A
churn of 0.1 thus signifies that on average, we move 10% of
the user-stored data around the network in order to maintain
the current state.

Figure 7: Effect of Stretch and Churn in Farsite and
Overnet

Figure 7 shows stretch and churn cost in Farsite and
Overnet for the various schemes. Farsite only needs two
replicas in the replication scheme at the aggressive timeout
value 1. The two primary copies in EC/2P and the
triplication of data buckets in BUCK/2R are overkill and
these schemes far exceed our availability threshold of
99.99%. EC/1P has a slightly worse stretch than REP, but
this is because the minimum configuration, one primary
copy and 7 chunks, just misses the availability mark of
99.99%. All bucketing schemes cause considerably more

churn. Since Farsite peers are highly available, we typically
only have to replace data on a single peer. EC/1P and
EC/2P deal best with this situation. If the primary copies
have survived, we generate a new chunk from the primary
and send it to the replacement peer for a cost of 1/m.
Replacing a peer in BUCK is done at one of the surviving
buckets, we read m–1 other buckets and write to the
replacement peer, for a total transfer cost of m times the
contents of the bucket. Consequentially, BUCK and its
variants have considerably more churn costs in both traces.

As expected, the Overnet trace, Figure 7, with relatively
low peer availability, had considerably higher stretch and
churn than Farsite. An aggressive timeout and replacement
policies force early replacements of typically a single peer.
As before, EC/1P and EC/2P have the least amount of churn
cost. REP and EC, as before, have slightly higher churn
costs and BUCK and its variants fares more poorly. The
cost of churn should diminish as replacement picks more
highly available peers.

Table 3: Churn Costs in Overnet and Farsite, First

and Last Quintile, Timeouts 1hr and 24 hrs

 Farsite Overnet

Scheme T=1 T=24 T=1 T=24

BUCK 1st quint. 0.0336 0.0058 0.1474 0.0069

BUCK 5th quint. 0.0198 0.0027 0.1302 0.0095

BUCK/1R 1st q. 0.0329 0.0058 0.1424 0.0069

BUCK/1R 5th q. 0.0196 0.0027 0.1273 0.0096

BUCK/2R 1st q. 0.0324 0.0059 0.1358 0.0068

BUCK/2R 5th q. 0.0192 0.0028 0.1219 0.0096

EC 1st quintile 0.0048 0.0008 0.0202 0.0009

EC 5th quintile 0.0028 0.0004 0.0180 0.0014

EC/1P 1st quint. 0.0005 0.0001 0.0049 0.0005

EC/1P 5th quint. 0.0003 0.0000 0.0039 0.0008

EC/2P 1st quint. 0.0011 0.0002 0.0039 0.0003

EC/2P 5th quint. 0.0006 0.0001 0.0033 0.0004

REP 1st quintile 0.0049 0.0008 0.0245 0.0011

REP 5th quintile 0.0029 0.0004 0.0211 0.0014

Table 3 contrasts the churn costs in the first and the last

quintile of the trace. We obtained these values with 10,000
runs. We notice the beneficial effects of increasing the
timeout. We also notice that Overnet churn costs increase
from the first quintile to the last when using T = 24, mainly

because the timeout value (1 day) is so close to one fifth the
length of the trace (of 7 days). This problem is endemic to
using timeout schemes on finite traces. Just as a cold cache
has mandatory misses, so our timeout scheme can only
replace underperforming peers after a warm-up period.

Figure 8: Effect of Stretch and Access in Overnet

4.2 Access Costs

Recall that we distinguish two access costs, the number

of pings to find the data and the amount of data that needs to
be transferred. Recall also that measuring access costs in
pings should be valid in a P2P storage system, but is
meaningless for some P2P systems. Only Bucketing
transfers a larger amount than the requested piece of data,
and this only if the peer(s) storing the entire data item are
unavailable. We use the number of pings as a measure of
the latency users will experience before they start receiving
data.

Figure 8 shows the stretch and access cost (number of
pings) for Overnet. The EC scheme is not shown because
its access cost is so much greater than the others (about 8
under these conditions). The access cost of EC is so high
because no single peer can supply the entire data item.

4.3 Sensitivity

Tables 4 and Figure 9 show the influence of the choice
of the time-out parameter. In related, unpublished work, the
authors found that more sophisticated selection mechanisms
than randomly picking an available peer as a replacement
can improve the availability of the selected peers over time,
but that the improvement is rarely over 20% in availability.
Similarly, the choice of the erasure coding parameter m also
influences stretch and churn costs but the effect is also less

pronounced.

Table 4: Complete Overnet and Farsite stretch

results

 Overnet Farsite
Scheme T-out m=4 m=7 m=12 m=4 m=7 m=12

1 5 5 5 2 2 2
24 12 12 12 3 3 3

REP

∞ 21 21 21 4 4 4
1 2.75 2.15 1.92 1.5 1.29 1.25

24 5.71 4.43 3.67 2 1.58 1.42
BUCK

∞ 9.25 7.29 6 2.5 2 1.81
1 3 2.58 2.42 2.25 2.15 2.09

24 5.75 4.58 3.92 2.5 2.29 2.17
BUCK
/1P

∞ 9.5 7.29 6.09 2.75 2.58 2.34
1 3.5 3.29 3.25 3 3 3

24 6 5 4.42 3.25 3.15 3.09
BUCK
/2P

∞ 9.5 7.58 6.34 3.5 3.29 3.17
1 2.75 2.29 1.92 1.5 1.43 1.25

24 5.75 4.43 3.75 2 1.72 1.5
EC

∞ 9.25 7.29 6 2.5 2.15 1.84
1 3.5 3.15 2.84 2.25 2.15 2.11

24 6.5 5.41 4.67 2.71 2.43 2.34
EC/1P

∞ 10 8.15 6.84 3.25 2.91 2.67
1 4 3.86 3.67 3 3 3

24 7.25 6.15 5.5 3.5 3.29 3.25
EC/2P

∞ 10.75 8.91 7.75 4 3.72 3.51

Figure 9: Effect of Timeout in Overnet

4.4 Improving Bucketing

Lazy peer replacement lowers the costs of churn. As
bucketing has higher churn costs, we experimented with an
“improved” version of bucketing (BUIM), where we add m
additional parity peers to a reliability stripe. We only
replace data on lost parity peers if m or more peers need to
be replaced. This bulk replacement lowers the data transfer
overhead that the original bucketing scheme incurs. Recall

that if we reconstruct a single peer, we access m peers, but
also have to transfer m times the amount of data stored on a
peer. Table 5 shows that the increased stretch of BUIM with
mirrored or triplicated data peers pays off in significantly
lowered churn costs, about a factor of 10 in both Overnet
and Farsite.

4.5 Summary

When assessing our various schemes, we observed that
Replication has the lowest maintenance costs and is
conceptually the simplest scheme. However, only with high
peer availability was its stretch comparable to other
schemes. Bucketing and Erasure Coding have much lower
stretch, with the advantage going to Bucketing when using
highly available peers. In general, Bucketing has the
highest churn cost and Erasure Coding the highest access
cost.

Table 5: Churn Costs in Overnet and Farsite, First
and Last Quintile, Timeouts 1hr and 24 hrs

 Farsite Overnet

Scheme T=1 T=24 T=1 T=24

BUCK/1R 1st 0.0329 0.0058 0.1424 0.0069

BUCK/1R 5th 0.0196 0.0027 0.1273 0.0096

BUIM/1R 1st 0.0033 0.0005 0.0141 0.0002

BUIM/1R 5th 0.0019 0.0002 0.0133 0.0003

BUCK/2R 1st 0.0324 0.0059 0.1358 0.0068

BUCK/2R 5th 0.0192 0.0028 0.1219 0.0096

BUIM/2R 1st 0.0037 0.0006 0.0183 0.0005

BUIM/2R 5th 0.0022 0.0003 0.0165 0.0007

Not surprisingly, we observe that combining replication

with either Bucketing or Erasure Coding lowers the access
cost considerably because a complete copy of the data is
usually available from a single peer. Our “improved” hybrid
bucketing schemes (Table 5) present a further performance
compromise. It trades higher stretch than hybrid Erasure
Coding for easier access and almost the low churn costs of
hybrid Erasure Coding.

5 Conclusions

Replication is simple and offers good performance, but
its stretch is reasonable only for very highly available peers.
More complex schemes are worth considering when peers

exhibit lower availability as in the traces of Farsite and
Overnet. Fault-free software for distributed systems is
difficult to produce and we caution against adding too much
complexity. The most complicated part of a P2P storage
scheme implementation lies in the addressing scheme, the
monitoring of the peers and the selection of replacement
peers, i.e., the handling of churn. An improved redundancy
scheme does not require a significant amount of added
complexity. Linear Erasure Coding schemes are well known
and can be implemented in a separate module. The
complexity of updating data (and parity) in any scheme
depends on the guarantees given about when the change of
data becomes visible to all users. This is a well-known,
difficult, but solved problem in distributed systems and
well-studied in the literature. The added complexity of
Erasure Coding or Bucketing is small in comparison.

In short, we believe that implementing pure erasure
coding and bucketing impose rather high maintenance costs
(churn) and access costs, even for relatively highly available
peers. As a consequence, we advise the use of hybrid
schemes that combine data Replication with either Erasure
Coding or Bucketing. A hybrid scheme achieves reasonably
good performance because it typically accesses data items
directly (i.e. it uses Replication for both maintenance and
data access) and achieves very high data availability at a
reasonable stretch level because it uses the more space
efficient methods of Erasure Coding or Bucketing to
increase the data availability level. Our experiments with
traces of P2P systems confirm these conclusions.
Additionally, we can reduce the costs of churn in Bucketing
by being smart about maintenance, creating proactively
“spare” parity buckets so that we can perform bulk
maintenance operations less often.

In the larger picture, our work addresses to some extent
the concerns of the work of Blake and Rodrigues [5]. As we
have seen, churn costs are manageable in our environment,
mainly because our replacement mechanism selects peers
with higher availability with good network bandwidth. We
achieve scalability, because reliability groups are
autonomous. This leaves the problem of locating the data,
something that this paper could not address.

In conclusion, our results lead us to recommend the use
of replication to obtain simple data access most of the time,
but to use additional erasure-code-generated parity to
achieve the last nines in the desired availability level. While
we can tolerate the observed churn in a P2P storage
environment, lazy and proactive techniques to reduce churn
are advisable. However, in this paper, we did not study the
efficacy of these schemes again. Our results suggest a P2P
storage system with reasonable maintenance costs, fast
access time, desired high availability, and reasonable
storage overhead from peers with a much smaller
availability level.

REFERENCES

[1] A. Adya, W. Bolosky, M. Castro, G. Cermak, R. Chaiken, J.
Douceur, J. Howell, J. Lorch, M. Theimer, R.. Wattenhofer:
FARSITE: federated, available, and reliable storage for an
incompletely trusted environment. 5th Symposium on Operating
Systems Design and Implementation (OSDI), 2002.

[2] R. Bhagwan, D. Moore, S. Savage, G. Voelker: Replication
strategies for highly available peer-to-peer storage. Future
Directions in Distributed Computing (FuDiCO), 2002.

[3] R. Bhagwan, S. Savage, G. Voelker: Understanding
Availability. 2nd International Workshop on Peer-to-Peer Systems
(IPTPS '03). Peer-to-Peer Systems II, Springer, Lecture notes in
computer science vol 2735, pp 256-267.

[4] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, G. Voelker:
Total Recall: System Support for Automated Availability
Management. Proceedings of the first Symposium on Networked
Systems Design and Implementation (NSDI), Mar. 2004.

[5] C. Blake, R. Rodrigues: High availability, scalable storage,
dynamic peer networks: pick two. Proceedings of the 9th
Workshop on Hot Topics in Operating Systems (HotOS-IX),
Lihue, Hawaii, 2003.

[6] L. P. Cox, C. Murray, B. Noble: Pastiche: Making backup
cheap and easy. In 5th Symposium on Operating Systems Design
and Implementation (OSDI), 2002.

[7] B. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon,
M. Kaashoek, J. Kubiatowicz, R. Morris: Efficient replica
maintenance for distributed storage systems. Proceedings, 3rd
USENIX Symposium on Networked Systems Design and
Implementation (NSDI '06), 2006.

[8] E. Cohen, S. Shenker: Replication strategies in unstructured
peer-to-peer networks. ACM SIGCOMM Computer
Communication Review, vol. 32(4), October 2002.

[9] A. Datta, K. Aberer: Internet-Scale Storage Systems under
Churn – A Study of the Steady-State Using Markov Models. 6th
International Conference on Peer-to-Peer Computing, (P2P’06),
2006.

[10] J. Douceur, R. Wattenhofer: Optimizing file availability in a
secure peerless distributed file system. Proceedings of 20th IEEE
Symposium on Reliable Distributed Systems (SRDS), 2001, pp. 4-
13.

[11] Brighten Godfrey: Repository of Availability Traces.

www.cs.berkeley.edu/~pbg/availability/

[12] P. Godfrey, S. Shenker, I. Stoica: Minimizing Churn in
Distributed Systems, Proceedings of SIGCOMM, 2006.

[13] S. Hand and T. Roscoe: Mnemosyne: Peer-to-Peer
Steganographic Storage. Proceedings 1st International Workshop
on Peer-to-Peer Systems (IPTPS '02). 2003.

[14] L. Hellerstein, G. Gibson, R. Karp, R. Katz, D. Patterson:
Coding techniques for handling failures in large disk arrays.
Algorithmica, 12:182-208, 1994.

[15] J. Li, F. Dabek: F2F: Reliable Storage in Open Networks.
Proceedings, 5th International Workshop on Peer-To-Peer
Systems. 2006.

[16] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, M. Isard:
A cooperative internet backup scheme. In Proceedings of the 2003
Usenix Annual Technical Conference, pp. 29-41, San Antonio,
Texas, June 2003.

[17] W. Lin, D. Chiu, Y. Lee: Erasure Code Replication Revisited,
Proc. 4th International Conference on Peer-to-Peer Computing
(P2P’04).

[18] R. Mahajan, M.l Castro, A. Rowstron: Controlling the Cost of
Reliability in Peer-to-Peer Overlays. 2nd International Workshop
on Peer-to-Peer Systems (IPTPS '03), 2003. Peer-to-Peer Systems
II, Springer, Lecture notes in computer science vol. 2735.

[19] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H.
Weatherspoon, J. Kubiatowicz: Maintenance-Free Global Data
Storage, IEEE Internet Computing, Vol. 5(5), September/October
2001, pp 40-49.

[20] R. Rodrigues, B. Liskov: High Availability in DHTs: Erasure
Coding vs. Replication. 4th International Workshop on Peer-to-
Peer Systems (IPTPS'05). Ithaca, New York, USA. February 2005.

[21] E. Sit, A. Haeberlen, F. Dabek, B. Chun, H. Weatherspoon, R.
Morris, M. . Kaashoek, and J. Kubiatowicz. Proactive replication
for data durability. Proceedings of the Fifth International
Workshop on Peer-to-Peer Systems (IPTPS '06), February 2006

[22] H. Weatherspoon and J. Kubiatowicz: Erasure coding vs.
replication: A quantitative comparison. Proceedings of the 1st
International Workshop on Peer-to-Peer Systems (IPTPS 2002),
March 2002.

[23] B. Zhao, L. Huang, J. Stribling, S.. Rhea, A. Joseph, J.
Kubiatowicz: Tapestry: A Resilient Global-scale Overlay for
Service Deployment. IEEE Journal on Selected Areas in
Communications, Vol 22(1), January 2004

