
 

Abstract— Many modern, large-scale storage solutions offer 
deduplication, which can achieve impressive compression rates for 
many loads, especially for backups. When accepting new data for 
storage, deduplication checks whether parts of the data is already 
stored. If this is the case, then the system does not store that part of 
the new data but replaces it with a reference to the location where 
the data already resides. A typical deduplication system breaks 
data into chunks, hashes each chunk, and uses an index to see 
whether the chunk has already been stored. Variable chunk 
systems offer better compression, but process data byte-for-byte 
twice, first to calculate the chunk boundaries and then to calculate 
the hash. This limits the ingress bandwidth of a system. We propose 
a method to reuse the chunk boundary calculations in order to 
strengthen the collision resistance of the hash, allowing us to use a 
faster hashing method with fewer bytes or a much larger (256 times 
by adding two bytes) storage system with the same high assurance 
against chunk collision and resulting data loss. 
 

Keywords— Deduplication, Algebraic Signatures 

I.  INTRODUCTION 

EDUPLICATION is an increasingly popular strategy to 
compress data in a storage system by identifying and 

eliminating duplicate data. Online deduplication of backup 
workloads has shown impressive compression ratios (20:1 as 
reported by Zhu, Li and Patterson [1], and up to 30:1 as 
reported by Mandagere, Zhou, Smith, and Uttamchandi [2]). It 
has been shown to scale to petabytes [3]. 

   Identifying online duplicate data in a system that already 
stores petabytes of data is difficult. File-based deduplication 
only checks for duplicate files, but looses deduplication 
opportunities in all instances where a file is stored again with 
only slight changes. Additionally, many systems do not store 
files, but streams, as arise for example from taking a full 
system backup. Chunk-based deduplication [4], [5], [6] 
divides input into chunks, characterizes these chunks by their 
hash, and looks for duplicate chunks using an index based on 
the hashes. Using fixed-sized chunks looses deduplication 
opportunities when data differs from already present data by 
small insertions or deletions. Content defined chunking [5] 
uses local information to define chunk boundaries in way 
independent of alterations in previous chunks. Small, localized 
  
  

 
 
 
 

  
 
Figure 1: Sliding Window Technique 
 
changes in a large file do not alter most of the chunks of the 
file. The system can recognize this duplicate data and avoid 
storing them twice. Calculating chunk boundaries involves 
processing incoming data byte-for-byte. After calculating the 
chunk boundaries, the deduplication system calculates a hash 
value of the chunk and then looks up (and later stores) the 
value in an index of all previous chunk hashes. If we can find 
the same hash value, we conclude that the chunk is already 
stored and do not store it a second time. In order to achieve 
good bandwidth on ingress, deduplication typically does not 
verify the identity of chunks with a byte-for-byte comparison. 
If there is a hash collision – two different chunks have the 
same hash value – then the system has lost the newer data. 
The data loss rate due to these collisions has to be smaller than 
the data loss rate due to other causes such as disk failures or 
cooling system failures for deduplication to be acceptable. We 
easily control the hash collision probability by using good 
hash functions with more bits, replacing MD5 with 128 bits 
for SHA-1 (160 bits) or upgrading to a member of the SHA-2 
family such as SHA-256 with 256 bits. 
 In addition to loading indices into memory from a disk or 
flash memory, chunk determination and chunk hash 
calculation form a bottleneck for which we pay in the form of 
better or more processors. Using a faster hash function is 
therefore attractive.  

Chunk boundaries need to be calculated in a manner 
independent of alterations to the file or the data stream at far 
away locations. It commonly uses a sliding window technique 
[5] (Fig. 1). This technique calculates a function of the bytes 
in a small window and sets a chunk boundary if the value is 
equal to zero. Our contribution is to reuse this calculation to 
obtain additional bytes for the hash and strengthen collision 
resistance at no costs to performance. Alternatively, by 
reusing work already done, we can use a faster hashing 
algorithm that generates fewer bytes. Our work can be 
incorporated in all current deduplication techniques with one 
slight exception, which we will now discuss. 
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The generic method of chunk boundary determination is 
probabilistic and can lead to very small and to very large 
chunks, which has a negative impact on deduplication rates. 
Eshgi and Tang [7] use additional techniques to prevent 
chunks that are excessively small or large. To prevent 
excessively small chunks, possible chunk boundaries 
encountered shortly after the start of a new chunk are ignored. 
They also use a secondary condition to create alternative 
chunk boundaries. If a chunk becomes too big, the most 
appropriate alternative boundary is used. If we incorporate our 
proposal with their technique, we would not be able to incur 
the savings accruing from not evaluating the window near the 
chunk beginning. 

The security of the system can depend on the security of the 
hash function used. An adversary with access to the storage 
system can mount a targeted-collision attack [8] by finding a 
collision with a chunk that is to be inserted in the future. For 
an example, assume that the storage systems stores system 
files of various workstations. A patch will change these files 
in a predictable manner. An adversary could create a new 
chunk colliding with a chunk in a modified system file and 
insert it in the storage system before the new system files are 
stored there. After the victim’s system has been patched and 
backed up, the system would then recover not the attacked file 
but a file altered by the adversary. We can protect against this 
type of attack in various ways [8], including simply by using a 
keyed-Hash Message Authentication Code (HMAC) instead 
of a well-known, fixed hash function such as MD5. In this 
paper, we are concerned with preventing collisions arising 
statistically from the large number of chunks in the system. 

In what follows, we explain the mathematics of chunk 
boundary calculation with an eye towards performance 
(Section II), then present our chunk boundary cum hashing 
algorithm (Section III), and finally evaluate the quality of the 
addition to the chunk hash and its consequences for collision 
resistance (Section IV). 

II.  CHUNK BOUNDARY CALCULATIONS  

We determine chunk boundaries by calculating a function 
of a small window (e.g. of size 4 to 10 bytes) and setting a 
chunk boundary if the function has a value in a specific set. 
Most appropriate is the use of a rolling hash, in which the 
value of the window moved to the right by one byte is 
calculated from the previous value, the byte on the left that 
just entered the window, and the byte on the right that just left 
the window. There are several, mathematically related 
possibilities for defining a rolling hash. We will here use a 
variant of algebraic signatures [9] but present for the sake of 
completeness the popular Rabin Fingerprints [10] in order to 
show that our choice bears the same computational burden. 

A.  Rabin Fingerprint 

Rabin’s fingerprinting scheme [10], [11] associates first a 
polynomial to a bit string ),...,,( 110  mpppP by setting 
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and then uses a fixed irreducible polynomial g(t) over F2, (i.e. 

a polynomial with coefficients either 0 or 1) to define the 
Rabin Fingerprint of the string as 

) (mod    )( gpPR P  

where g defines this particular fingerprint. As is usual, we 
identify a polynomial pP(t) with the bit string P, where, if 
necessary, we pad on the left with zeros to fit P into bytes or 
words. The number of bits in the Rabin fingerprint is given by 
the degree of the polynomial g(t). For example, a four-byte 
Rabin fingerprint requires a polynomial g(t) of degree 32.  

Assume a sliding window size of w and a byte string P = 
,...),( 10 pp . We first convert the byte string P into a string of 

bits. We identify also a byte pi with the polynomial 
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where ],,...,,[ 7,6,1,0, iiiii ppppp  is the decomposition of the 

byte pi into eight bits. We then calculate modulo g(t): 

8
121

)1(8

8)2(8
1

)1(8)1(8

8)3(8
2

)2(8
1

8
21

)(),...,,,()(

)(...)()()(

)(...)()(

),...,,(   


































ttpppppRttp

ttpttpttpttp

ttpttpttp

tpppR

wrwrrrr
w

r

wr
w

r
w

r
w

r

wr
w

r
w

r

wrrr

 

In the second equation, we use the fact that addition of 
coefficients is the bitwise exclusive-or operation. We will 
continue to use the “+” symbol to denote this operation, which 
is the addition in the Galois field with two elements, 0 and 1. 

Consequentially, .0)()( )1(8)1(8   w
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our calculation, we obtain the transformation rule for sliding 
windows: 
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We will use this transformation rule to calculate the sliding 
window signature. The easiest implementation uses two tables 
for the multiplication with t8 and t8w. Incidentally, Broder [11] 
has proposed a very efficient solution that calculates the Rabin 
fingerprint of an object by processing several characters at a 
time. This technique is of course not available to us. 

An alternative way of calculating the Rabin fingerprint of a 
sliding window maintains the fingerprint ),...,( 0 mppR of the 

current chunk seen so far. We then calculate the value of a 
chunk up to the nth byte by  
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The value of the sliding value is then given by 
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where again we calculate modulo g(t). In both cases, the 
straightforward implementation uses two table lookups and 
two XOR operations.  

The table sizes are large. If the degree of g is k, then there 
are 2k possible values for the fingerprint and correspondingly 
there are 2k entries of size 2k bits. For even moderate values of 
k, the table becomes too big, especially to fit in the L1 or L2 
cache. For example, if k = 16, the table size is 131 kB, so that 
fingerprint calculations using a single table for each 
multiplication limits the size of fingerprints to two bytes. 



 

Fortunately, we can use the linearity of multiplication. To 
generalize, assume that we want to implement multiplication 
modulo g(t), a fixed polynomial of degree k. Call 
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the set of all polynomials with binary coefficients up to degree 
k–1. Assume that we want to implement multiplication by a 
polynomial .)( ktf  We break each polynomial kta )(  
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910 ata  that represent the results of breaking the k-bit string 

into bytes. If necessary, we buffer with zeros at the end. 
Assume now that we want to implement multiplication with a 
given polynomial f(t) modulo g(t). We observe that by the 
distributive law of multiplication 

 
...)()()()()()(

...)()()()()()(

2
16

1
8

0

16
2

8
10





tAttftAttftAtf

ttAttAtAtftatf
 

We therefore need a table (with 28 entries of k bits each) to 
implement multiplication (mod g(t)) of f(t) and a polynomial 
in ,8 a second table to implement multiplication of f(t)t8 and 

a polynomial in ,8 etc. All in all, we need k/8 tables of size 

28k bits, at a considerable savings in space, but also at the 
costs of adding k/8–1 exclusive-or operations.  

B.  Algebraic Signatures 

Algebraic signatures are hash functions with algebraic prop-
erties [9]. Just as the cryptographically secure hashes such as 
SHA-1, SHA-2 or MD5 [12], [13], they identify large data 
objects with very low probability of collision. Unlike these 
hashes, they have algebraic properties that for example allow 
us to calculate the algebraic signature of a composite object 
from the algebraic signatures of the components. These 
properties could be exploited by a hypothetical attacker if 
algebraic signatures were to be used in their place in a 
cryptographic protocol, but we do not use them here in a way 
that impacts security. Algebraic signatures use Galois field 
arithmetic, which we now briefly review. 

As the better known fields of rational, real, or complex 
numbers, Galois fields also have an addition and a 
multiplication that share the same arithmetic rules. The 
number of elements in a Galois field is always a power of a 
prime, and for each such number, only one Galois field (up to 
isomorphy) exists. We are only concerned with Galois fields 
where the number of elements is a power of 2. We write F(2f) 
for the only Galois field with 2f elements. Because of the byte-
based nature of storage systems, we furthermore will only use 
f=8 in what follows. With this choice of f, we can identify 
each element in the Galois field with a byte. However, we 
point out that our results are true when using a different value 
for f. We implement the operations in F(2f) by using the 
representation of Galois field elements as bit strings of length 
f. The addition is given by the exclusive-or and the zero 
element is the bit strings with only zero digits.  

For our purposes (as well as for other applications such as 

cryptography) so-called primitive elements in the Galois field 
are important. An element α is a primitive element if its 
powers αi, i=0, 1, ... make up all non-zero elements of the 
field. Algebra proves that all Galois fields not only have 
primitive elements, but that they are plentiful. If we fix a 
primitive element α, then any other non-zero element  is a 
power αi of α, where i is a uniquely determined number 
between 0 and 2f –1. In this case, we call i the logarithm of  
and write i = loga() and  = antilogα(i). We can multiply two 
non-zero elements in the Galois field by 

))(log)(log(antilog     

where the addition is taken modulo 2f–1. Galois field 
multiplication can be implemented in a variety of ways such 
as by one or several tables. The best method for Galois field 
multiplication depends on the processor architecture, cache 
sizes, speed and miss penalties, and the size of the field [14].  

The definition of algebraic signatures as given in [9] is not 
optimal for use as a rolling hash. We therefore define an 
alternative algebraic signature, the s-signature, which has the 
same basic structure and corresponding properties as the 
algebraic signature and is simply the algebraic signature of the 
window reversed byte-by-byte. We identify the bytes in the 
window with elements of the Galois field with 28 elements.  

An s-signature consists of several components each of 
which is a byte. A component of the s-signature is defined 
using an element  of the Galois field. If 

),...,,( 110  npppP is a string of bytes, then we define the 

component s-signature as 
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The complete s-signature is a vector of length m where each 
element is a component s-signature defined by consecutive 
powers of a primitive element α. 
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When we slide a window one character to the right, we update 
a component of the s-signature using 
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As we want to use s-signatures as hashes of the whole chunk, 
we combine calculating the compound s-signature of the 
chunk seen so far with updating the signature of the window 
as it slides character by character to the right. When we 
process one more byte in the chunk, we update all components 
of the s-signature using 
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and calculate the window signature from  
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We set a chunk boundary if the window s-signature is zero. 
This is done by comparing two compound signatures, 
beginning at the left boundary of the current chunk and ending 
just before or at the end of the window. The condition is 
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 Each time we process a new character, we upgrade the s-
signature of the chunk seen so far. Per component of the s-
signature, processing this character costs us one addition 
(exclusive-or) and one Galois field multiplication, which we 
can implement as a table lookup. We then test for a chunk 
boundary, which costs us also an addition (exclusive-or) and a 
Galois field multiplication per component. 

Comparing the costs of calculating s-signatures and Rabin 
fingerprints, we obtain the same number of table look-ups and 
exclusive-or operations. Thus, operationally, neither method 
has an advantage. We prefer algebraic signatures because we 
can prove their suitability as good hash functions. The 
argument of our paper (chunk boundary calculations can be 
re-used for obtaining additional bytes of the hash at no costs) 
is valid for either algebraic signatures or Rabin fingerprints. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 2: Pseudo-Code for Chunk Boundary Calculation 
 

III.  IMPLEMENTATION 

We use an s-signature of size two bytes and use a small 
window of four bytes. Internally, we maintain a circular buffer 
in order to store the last four s-signatures of the chunk seen so 
far. Because s-signatures are very good hash function (as we 
will show in the next section) we chose the small window 
size, though the method carries directly over to larger 
windows. The two byte size of the s-signature implies that we 
will break on average after 216 bytes, or equivalently, that the 
average chunk size is 64 kB. This value is higher than usually 
used, but we can modify the condition in order to break more 
frequently.  

The properties of the s-signature (Section IV) guarantee that 
we will break if we encounter four zero bytes in a row. This 
allows us to check without additional costs if we have reached 
a longer run of zeros. We do not need to store these zeros 
explicitly, but can compress the file by storing the number of 
zeros encountered instead.  

We give pseudo-code of our implementation in Fig. 2. We 
chose a fixed primitive element α and generate multiplication 
tables for multiplication by α, α2, α4, and α8. These elements 
are the variables a, a2, a4, and a8 in the code. We store s(α, . ) 
and s(α2, . ) in variables p1 and p2. When we process a new 

character c of the file, we actualize p1 and p2 using p1 = 
αp1c and p2 = α2p2c. We then store the tuple (p1,p2) in 
the circular buffer of size four. However, before we overwrite 
the value, we retrieve the tuple (q1, q2) previously stored 
there, which is the s-signature of the chunk four characters 
before. These values are used to test the break condition q1α4 
= p1 and q2α8 = p2. The multiplications mult with various 
constants are implemented by table look-up using a table with 
256 entries. 

A break is triggered whenever two values of 16 bits each 
are equal. Since both values behave like random numbers, this 
happens with probability 2-16. If we want to have breaks 
happen more frequently, we can calculate the logical AND of 
both sides with a mask with l bits set, leading to average 
chunk sizes of 2l bytes. 

We give the complete algorithm for chunk boundary 
termination in Fig. 2. There, we maintain a circular buffer (oc) 
to contain the previous four chunk signatures and use i as an 
index into this buffer. Since our window size of four is a 
power of two, incrementing the index is particularly efficient 
since 

i = (i+1) & m 
accomplishes the increment modulo 2k with m = 2k–1.  

We verified the efficiency of our algorithm experimentally. 
Our results in Table I show that on our test machine (with an 
Intel Duo processor with clock rate 2.3 GHz), chunk boundary 
calculation run about twice as fast as an implementation of 
MD5 from RSA Security, Inc. (1991). SHA-1 was 20% 
slower than MD5. Calculating the complete chunk hash as an 
algebraic signature of 16 bytes unfortunately run 3.8 times 
slower than MD5. Thus, our initial hope of integrating 
boundary calculation and chunk hash calculation proved to be 
infeasible using algebraic signatures. Newer processors have 
new machine instructions in order to implement AES and 
other cryptographic algorithms faster and on these 
architectures, algebraic signature calculation could also run 
faster. 

 
TABLE I: Throughput of MD5 and Chunk Boundary Calculation 

 

TASK THROUGHPU
T 

MD5 1.939 GB/sec 
Chunk Boundary Determination 4.267 GB/sec 

 

IV.  ADDED ANTI-COLLISION ASSURANCE 

A collision is a situation where chunk signatures coincide 
while the chunks themselves differ. The result of a collision in 
a deduplication system is that the incoming file is not stored 
correctly, rendering it essentially unusable. A chunk collision 
therefore always constitutes data loss. We now first calculate 
the added anti-collision assurance assuming a perfectly flat 
hash function (where each value of the hash is taken with the 
same probability) and then discuss the flatness of algebraic 
signatures. 

A.  A Bound for Storage System Size Based on Anti-

i = 0 
for j in range(4): 
oc[j] = (0, 0) 

while True: 
 c = getNextCharacter(file) 
p1 = mult(a,p1) ˆ c 
p2 = mult(a2,p2) ˆ c 
(q1, q2) = oc[i] 
if mult(a4, p1), mult(a8, p2) & mask  
    == (p1, p2) & mask: 

trigger_chunk_boundary() 
oc[i] = (p1, p2) 
i = i+1 mod 4 



 

Collision Assurance 

The problem of calculating the probability of one or more 
collisions in a system with N chunks is better known as the 
Birthday Paradox. Good approximations for the collision 
probability are known [15], but are strictly valid only if each 
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Figure 3: Maximum Number of Chunks for perfectly flash hash 
functions of 16, 18, and 20 bytes in dependence on the number of 
nines in the anti-collision assurance. 
 
 
value of the signature is equally likely. In this case, a 
reasonable approximation for the collision probability if there 
are 2m possible hash values is 
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This number applies to a signature of m bits. We measure 
resilience against the existence of even one collision with the 
assurance, which we define to be the probability that there is 
no collision in the system. We usually measure assurance in 
terms of numbers of nine. For instance, an assurance level of 
six nines states that the probability of no collision is 
99.9999% and corresponds to a value of .000001.0col  p  

To be acceptable, the assurance against even one collision in 
the system needs to be higher than the assurance against any 
other type of data loss such as a combination of disk drive 
failures. If n is the number of nines in the assurance level, then 
we have to choose  = 10-n as our assurance target. 
Accordingly, for the probability of a collision to be less than a 
given assurance target , we solve the corresponding 
inequality and obtain 

12)1(ln  m-εN  

As we choose  <<1, we can use the linear approximation of 
the Taylor expansion of the natural logarithm around 1 to 
obtain 

2/)1(2  mN   

with an error of O(). We specify  in the number n of nines 
of confidence that a system with N chunks does not suffer a 

single collision, i.e. we set .10 n If we take the decadic 
logarithm of this number, we obtain 
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As a result, the maximum admissible number of chunks in the 
storage archive increases by 101.20412 for each additional byte. 
Two additional bytes increase the maximum size of the 
archive by a factor of 256 and three by a factor of 4096. We 
present numerical results in Fig. 3. The x-axis gives the 
numbers of nine of assurance while the y-axis gives the 
maximum number of chunks. We can multiply this number by 
the average chunk size to obtain the maximum storage 
capacity of the system (based solely on collision resistance). 

For example, if the probability of data loss in the storage 
system is estimated at 10-9 per year (a very good value) and 
the life of the storage system is estimated to be 100 years (a 
very high value), then assurance against a collision should be 
better than 10-11. We arbitrarily pick an anti-collision 
assurance level of 15 nines. If we use a hash similar to MD5 
with 16 bytes, the maximum number of chunks is then 
8.6921011. If we use our method to add two bytes to the hash 
size, we obtain a maximum of 2.2251014. If the average 
chunk size is 4 kB, the maximum size of the storage system 
changes from hundreds of petabytes to tens of exabytes, 
reaching the limits of current files systems. 

B.  Flatness of Algebraic Signatures 

Our calculation used the fact that the hash function is 
balanced or perfectly flat, i.e. that all values are taken equally 
often. This is exactly the case for algebraic signatures and 
approximately the case for Rabin fingerprints, if we consider 
each bit combination equally likely for a chunk. A verdict on 
the flatness of cryptographically secure signatures such as 
MD5 and the various members of the SHA-1 and SHA-2 
families is much harder to obtain, though Bellone and Kohno 
[16] report close to perfect flatness for signatures obtained 
from a few bytes of SHA-1 output. 

The argument for perfect flatness of algebraic signatures (or 
s-signatures) for random text is simple. If all 8b-characters in 
a string are equally likely to appear and there is no 
dependence between characters, then the probability that a 
given signature value is taken is proportional to the inverse of 
the total number of possible strings that take this value. 

We calculate the probability that a given large random 
string X has a particular value c = (c1, c2, ..., cm) as its 
(compound) algebraic signature. This gives us m equations 
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Matrix A is a matrix of Vandermonde type, if we order the 
columns in reverse order and is therefore of maximal rank m. 
The solution of the system of equations forms therefore a 
hyperspace of co-dimension m and the number of solutions is 
equal for each choice c of signature value. Therefore, if the 
input is random, then each value of the compound algebraic 
signature is taken with exactly the same probability. The 
   
 
TABLE II: Actual and expected number of collisions using a two 
byte signature on a dictionary (2.259MB) of moderately sized words.  
 

Nr of Words 
Colliding 

Observed  Expected 

0 2741 2664.6 
1 8539 8533.6 
2 13599 13664.5 
3 14563 14587.0 
4 11645 11678.9 
5 7377 7480.4 
6 4140 3992.7 
7 1835 1826.7 
8 721 731.25 
9 269 260.2 

10 69 83.3 
11 30 24.3 
12 8 6.5 

 13 0 2.1 
 
 
TABLE III: Actual and expected number of collisions using a three 
byte signature on the same dictionary 

 
Nr of Words 

Colliding 
Observed  Expected 

0 16 568 642 16 568 642.3 
1 207 274 207272 
2 1 293 1 296.47 
3 7 5.40624 

≥ 4 0 0.0169079 
 

 
TABLE IV: Actual and expected number of collisions using a two 
byte signature on a dictionary (2.259MB) of moderately sized words.  
 
 

Nr of Words 
Colliding 

Observed  Expected 

0 19092 19011 
1 23370 23527.7 

2 14654 14558.7 
3 5943 6005.84 
4 1194 1858.18 
5 455 499.928 
6 89 94.8663 
7 18 16.7721 
8 1 2.5946 
9 0 0.35678 

10 0 0.0441544 
≥ 11 0 0 

equivalent statement for MD5 and hashes in the SHA family is 
only approximately true. It is not true for Rabin fingerprints, 
since Rabin fingerprints are taken modulo a polynomial g. If 
we transform g into a binary string and transform it from there 
to an arbitrary precision integer, we can say that the Rabin 
fingerprint cannot be larger than g. Of course, the number of 
values that a Rabin fingerprint cannot take is quite small, 
certainly much less than half of the possible values, so that 
Rabin fingerprints are still approximately flat. 

Our calculations and arguments so far assume completely 
random input and we know that these do not make up the 
workload of storage systems. We therefore used English text 
as input for a test of flatness. To stack the deck against us, we 
do not calculate chunk signatures of English text, but instead 
use only words.  

Our raw data was a list of English words (209881 words or 
2.259MB) that is used to perform a dictionary attack on a 
password file (in our case, by administrators checking the 
strength of user chosen passwords). We calculated the 2-
component signature (2 bytes) of all words with more than 5 
letters (65536 words). We then tabulated how often different 
words had the same signature. For example, we found that 
there were 12 signatures that were each taken by 8 different 
words (penultimate line). The result is in Table II. We 
compared this number with the expected number of collisions 
for a perfectly flat signature of two bytes. The expected value 
of collisions is then given by a Poisson distribution with 
sample mean 3.202530. These numbers form the right column 
in Table II. Just looking at the numbers, the algebraic 
signature behaved in this case better than expected. We 
evaluated the difference with the 2 value, which we 
calculated to be 0.21 using 8+1 classes. While small, this 
value is not so small that one could state that the algebraic 
signature is flatter than that of a random, perfectly flat 
signature.  

We repeated the experiment on the same set, but now used a 
three component signature and obtained the values in Table 
III. The coincidence between observed and expected values is 
still remarkably good. The 2 value of 0.479166 confirms this.  

We repeated the first experiment on another, smaller 
dictionary (Table IV). In this case, observations and expected 
values do not match quite as well and the 2 value of 4.79742 
confirms this impression. Encouragingly enough, the tail of 
the distribution of actual collisions is smaller and the number 
of signatures taken by only one word is higher than expected. 
Again, the algebraic signature performs better than expected.  



 

We would like to emphasize that the fact that there are 
collisions at all is simply a function of the small size of 
algebraic signatures. There are 216 possible values that a two-
component algebraic signature can take and any collection 
numbering more than that number must have collisions. 

V.  CONCLUSIONS 

We presented a method that exploits work already done for 
chunk boundary calculations in order to add two (or three) 
bytes to the chunk signature. The additional bytes, obtained at 
no additional operational costs, improve the resilience of 
deduplication against chunk signature collision. As a result, a 
storage system can grow by a factor of 256 or (4096 when 
calculating three additional bytes) to provide the same high 
assurance level as before the change. Alternatively, the same 
two (or three) bytes can be used to switch to a faster, smaller, 
but less collision resilient hash function for the chunk 
signature. Our method constitutes one of the few cases of a 
practically “free lunch” in Computer Science. Integrating the 
additional bytes provided by the algebraic signature with the 
chunk signature is trivial. Loading the index into memory for 
searches and additions is largely independent of the size of 
index entries. If we choose a faster, shorter hash function, we 
recover the collision resilience of a larger hash while 
benefitting from faster calculations. 

VI.  FUTURE WORK 

The work presented here came out of an attempt to combine 
chunk boundary determination and chunk signature 
calculation in a single pass, using algebraic signatures. 
Unfortunately, calculating an algebraic signature of 16 or 20 
bytes length turned out to be several times slower than 
calculating MD5 or SHA1. This is not surprising since both 
hash functions were designed to process several bytes in a 
single step, avoiding the costly isolation of a single byte in a 
machine word on current processor architectures. Newer chip 
architectures (such as the Westmere chips introduced by Intel 
in 2010) implement new machine instructions useful for the 
calculation of AES and the speed question needs to be 
revisited for these machines. Since costs dictate that storage 
systems use commodity components, we do not foresee the 
use of special hardware to accelerate hash and signature 
calculations. 
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