

Abstract— Many modern, large-scale storage solutions offer
deduplication, which can achieve impressive compression rates for
many loads, especially for backups. When accepting new data for
storage, deduplication checks whether parts of the data is already
stored. If this is the case, then the system does not store that part of
the new data but replaces it with a reference to the location where
the data already resides. A typical deduplication system breaks
data into chunks, hashes each chunk, and uses an index to see
whether the chunk has already been stored. Variable chunk
systems offer better compression, but process data byte-for-byte
twice, first to calculate the chunk boundaries and then to calculate
the hash. This limits the ingress bandwidth of a system. We propose
a method to reuse the chunk boundary calculations in order to
strengthen the collision resistance of the hash, allowing us to use a
faster hashing method with fewer bytes or a much larger (256 times
by adding two bytes) storage system with the same high assurance
against chunk collision and resulting data loss.

Keywords— Deduplication, Algebraic Signatures

I. INTRODUCTION

EDUPLICATION is an increasingly popular strategy to
compress data in a storage system by identifying and

eliminating duplicate data. Online deduplication of backup
workloads has shown impressive compression ratios (20:1 as
reported by Zhu, Li and Patterson [1], and up to 30:1 as
reported by Mandagere, Zhou, Smith, and Uttamchandi [2]). It
has been shown to scale to petabytes [3].

 Identifying online duplicate data in a system that already
stores petabytes of data is difficult. File-based deduplication
only checks for duplicate files, but looses deduplication
opportunities in all instances where a file is stored again with
only slight changes. Additionally, many systems do not store
files, but streams, as arise for example from taking a full
system backup. Chunk-based deduplication [4], [5], [6]
divides input into chunks, characterizes these chunks by their
hash, and looks for duplicate chunks using an index based on
the hashes. Using fixed-sized chunks looses deduplication
opportunities when data differs from already present data by
small insertions or deletions. Content defined chunking [5]
uses local information to define chunk boundaries in way
independent of alterations in previous chunks. Small, localized

Figure 1: Sliding Window Technique

changes in a large file do not alter most of the chunks of the
file. The system can recognize this duplicate data and avoid
storing them twice. Calculating chunk boundaries involves
processing incoming data byte-for-byte. After calculating the
chunk boundaries, the deduplication system calculates a hash
value of the chunk and then looks up (and later stores) the
value in an index of all previous chunk hashes. If we can find
the same hash value, we conclude that the chunk is already
stored and do not store it a second time. In order to achieve
good bandwidth on ingress, deduplication typically does not
verify the identity of chunks with a byte-for-byte comparison.
If there is a hash collision – two different chunks have the
same hash value – then the system has lost the newer data.
The data loss rate due to these collisions has to be smaller than
the data loss rate due to other causes such as disk failures or
cooling system failures for deduplication to be acceptable. We
easily control the hash collision probability by using good
hash functions with more bits, replacing MD5 with 128 bits
for SHA-1 (160 bits) or upgrading to a member of the SHA-2
family such as SHA-256 with 256 bits.
 In addition to loading indices into memory from a disk or
flash memory, chunk determination and chunk hash
calculation form a bottleneck for which we pay in the form of
better or more processors. Using a faster hash function is
therefore attractive.

Chunk boundaries need to be calculated in a manner
independent of alterations to the file or the data stream at far
away locations. It commonly uses a sliding window technique
[5] (Fig. 1). This technique calculates a function of the bytes
in a small window and sets a chunk boundary if the value is
equal to zero. Our contribution is to reuse this calculation to
obtain additional bytes for the hash and strengthen collision
resistance at no costs to performance. Alternatively, by
reusing work already done, we can use a faster hashing
algorithm that generates fewer bytes. Our work can be
incorporated in all current deduplication techniques with one
slight exception, which we will now discuss.

Witold Litwin, Darrell D. E. Long, Thomas Schwarz, S.J.

Combining Chunk Boundary and Chunk
Signature Calculations for Deduplication

D

 Witold Litwin, Centre d’Etude y Recherche en Informatique Appliqué,
Université Paris Dauphine, Pl du Mal. de Lattre de Tassigny, 75016 Paris,
France. Witold.Litwin@dauphine.fr
 Darrell Long, Fellow, IEEE, Computer Science Department, University of
California at Santa Cruz, 1156 High Street, Santa Cruz, CA, USA.
darrell@cs.ucsc.edu
 Thomas Schwarz, S.J., Senior Member, IEEE, Dto. Informática y Ciencias
de la Computación, Av. 8 de Octubre, Universidad Católica del Uruguay,
Montevideo, Uruguay. tschwarz@ucu.edu.uy

The generic method of chunk boundary determination is
probabilistic and can lead to very small and to very large
chunks, which has a negative impact on deduplication rates.
Eshgi and Tang [7] use additional techniques to prevent
chunks that are excessively small or large. To prevent
excessively small chunks, possible chunk boundaries
encountered shortly after the start of a new chunk are ignored.
They also use a secondary condition to create alternative
chunk boundaries. If a chunk becomes too big, the most
appropriate alternative boundary is used. If we incorporate our
proposal with their technique, we would not be able to incur
the savings accruing from not evaluating the window near the
chunk beginning.

The security of the system can depend on the security of the
hash function used. An adversary with access to the storage
system can mount a targeted-collision attack [8] by finding a
collision with a chunk that is to be inserted in the future. For
an example, assume that the storage systems stores system
files of various workstations. A patch will change these files
in a predictable manner. An adversary could create a new
chunk colliding with a chunk in a modified system file and
insert it in the storage system before the new system files are
stored there. After the victim’s system has been patched and
backed up, the system would then recover not the attacked file
but a file altered by the adversary. We can protect against this
type of attack in various ways [8], including simply by using a
keyed-Hash Message Authentication Code (HMAC) instead
of a well-known, fixed hash function such as MD5. In this
paper, we are concerned with preventing collisions arising
statistically from the large number of chunks in the system.

In what follows, we explain the mathematics of chunk
boundary calculation with an eye towards performance
(Section II), then present our chunk boundary cum hashing
algorithm (Section III), and finally evaluate the quality of the
addition to the chunk hash and its consequences for collision
resistance (Section IV).

II. CHUNK BOUNDARY CALCULATIONS

We determine chunk boundaries by calculating a function
of a small window (e.g. of size 4 to 10 bytes) and setting a
chunk boundary if the function has a value in a specific set.
Most appropriate is the use of a rolling hash, in which the
value of the window moved to the right by one byte is
calculated from the previous value, the byte on the left that
just entered the window, and the byte on the right that just left
the window. There are several, mathematically related
possibilities for defining a rolling hash. We will here use a
variant of algebraic signatures [9] but present for the sake of
completeness the popular Rabin Fingerprints [10] in order to
show that our choice bears the same computational burden.

A. Rabin Fingerprint

Rabin’s fingerprinting scheme [10], [11] associates first a
polynomial to a bit string),...,,(110 mpppP by setting

12
2

1
1

0 ...)(
 mm

mm
P ptptptptp

and then uses a fixed irreducible polynomial g(t) over F2, (i.e.

a polynomial with coefficients either 0 or 1) to define the
Rabin Fingerprint of the string as

) (mod)(gpPR P

where g defines this particular fingerprint. As is usual, we
identify a polynomial pP(t) with the bit string P, where, if
necessary, we pad on the left with zeros to fit P into bytes or
words. The number of bits in the Rabin fingerprint is given by
the degree of the polynomial g(t). For example, a four-byte
Rabin fingerprint requires a polynomial g(t) of degree 32.

Assume a sliding window size of w and a byte string P =
,...),(10 pp . We first convert the byte string P into a string of

bits. We identify also a byte pi with the polynomial

7,6,
6

1,
7

0, ...)(iiiii ptptptptp

where],,...,,[7,6,1,0, iiiii ppppp is the decomposition of the

byte pi into eight bits. We then calculate modulo g(t):

8
121

)1(8

8)2(8
1

)1(8)1(8

8)3(8
2

)2(8
1

8
21

)(),...,,,()(

)(...)()()(

)(...)()(

),...,,(

ttpppppRttp

ttpttpttpttp

ttpttpttp

tpppR

wrwrrrr
w

r

wr
w

r
w

r
w

r

wr
w

r
w

r

wrrr

In the second equation, we use the fact that addition of
coefficients is the bitwise exclusive-or operation. We will
continue to use the “+” symbol to denote this operation, which
is the addition in the Galois field with two elements, 0 and 1.

Consequentially, .0)()()1(8)1(8 w
r

w
r ttpttp As a result of

our calculation, we obtain the transformation rule for sliding
windows:

)(),...,,,()(

),...,,(

121
8

21

tpppppRttp

pppR

wrwrrrr
w

r

wrrr

We will use this transformation rule to calculate the sliding
window signature. The easiest implementation uses two tables
for the multiplication with t8 and t8w. Incidentally, Broder [11]
has proposed a very efficient solution that calculates the Rabin
fingerprint of an object by processing several characters at a
time. This technique is of course not available to us.

An alternative way of calculating the Rabin fingerprint of a
sliding window maintains the fingerprint),...,(0 mppR of the

current chunk seen so far. We then calculate the value of a
chunk up to the nth byte by

)(),...,,(),...,,(8
11010 tptpppRpppR nnn

The value of the sliding value is then given by

),...,(),...,(),...,(10
8

101 r
w

wrwrr ppRtppRppR

where again we calculate modulo g(t). In both cases, the
straightforward implementation uses two table lookups and
two XOR operations.

The table sizes are large. If the degree of g is k, then there
are 2k possible values for the fingerprint and correspondingly
there are 2k entries of size 2k bits. For even moderate values of
k, the table becomes too big, especially to fit in the L1 or L2
cache. For example, if k = 16, the table size is 131 kB, so that
fingerprint calculations using a single table for each
multiplication limits the size of fingerprints to two bytes.

Fortunately, we can use the linearity of multiplication. To
generalize, assume that we want to implement multiplication
modulo g(t), a fixed polynomial of degree k. Call

}...{ 12
1

1 atatata k
k

k
kk

the set of all polynomials with binary coefficients up to degree
k–1. Assume that we want to implement multiplication by a
polynomial .)(ktf We break each polynomial kta)(

into addends

...)()()(16
2

8
10 ttAttAtA

with coefficients ,...)(12
7

80 atatatA ...)(7
161 tatA

910 ata that represent the results of breaking the k-bit string

into bytes. If necessary, we buffer with zeros at the end.
Assume now that we want to implement multiplication with a
given polynomial f(t) modulo g(t). We observe that by the
distributive law of multiplication

...)()()()()()(

...)()()()()()(

2
16

1
8

0

16
2

8
10

tAttftAttftAtf

ttAttAtAtftatf

We therefore need a table (with 28 entries of k bits each) to
implement multiplication (mod g(t)) of f(t) and a polynomial
in ,8 a second table to implement multiplication of f(t)t8 and

a polynomial in ,8 etc. All in all, we need k/8 tables of size

28k bits, at a considerable savings in space, but also at the
costs of adding k/8–1 exclusive-or operations.

B. Algebraic Signatures

Algebraic signatures are hash functions with algebraic prop-
erties [9]. Just as the cryptographically secure hashes such as
SHA-1, SHA-2 or MD5 [12], [13], they identify large data
objects with very low probability of collision. Unlike these
hashes, they have algebraic properties that for example allow
us to calculate the algebraic signature of a composite object
from the algebraic signatures of the components. These
properties could be exploited by a hypothetical attacker if
algebraic signatures were to be used in their place in a
cryptographic protocol, but we do not use them here in a way
that impacts security. Algebraic signatures use Galois field
arithmetic, which we now briefly review.

As the better known fields of rational, real, or complex
numbers, Galois fields also have an addition and a
multiplication that share the same arithmetic rules. The
number of elements in a Galois field is always a power of a
prime, and for each such number, only one Galois field (up to
isomorphy) exists. We are only concerned with Galois fields
where the number of elements is a power of 2. We write F(2f)
for the only Galois field with 2f elements. Because of the byte-
based nature of storage systems, we furthermore will only use
f=8 in what follows. With this choice of f, we can identify
each element in the Galois field with a byte. However, we
point out that our results are true when using a different value
for f. We implement the operations in F(2f) by using the
representation of Galois field elements as bit strings of length
f. The addition is given by the exclusive-or and the zero
element is the bit strings with only zero digits.

For our purposes (as well as for other applications such as

cryptography) so-called primitive elements in the Galois field
are important. An element α is a primitive element if its
powers αi, i=0, 1, ... make up all non-zero elements of the
field. Algebra proves that all Galois fields not only have
primitive elements, but that they are plentiful. If we fix a
primitive element α, then any other non-zero element is a
power αi of α, where i is a uniquely determined number
between 0 and 2f –1. In this case, we call i the logarithm of
and write i = loga() and = antilogα(i). We can multiply two
non-zero elements in the Galois field by

))(log)(log(antilog

where the addition is taken modulo 2f–1. Galois field
multiplication can be implemented in a variety of ways such
as by one or several tables. The best method for Galois field
multiplication depends on the processor architecture, cache
sizes, speed and miss penalties, and the size of the field [14].

The definition of algebraic signatures as given in [9] is not
optimal for use as a rolling hash. We therefore define an
alternative algebraic signature, the s-signature, which has the
same basic structure and corresponding properties as the
algebraic signature and is simply the algebraic signature of the
window reversed byte-by-byte. We identify the bytes in the
window with elements of the Galois field with 28 elements.

An s-signature consists of several components each of
which is a byte. A component of the s-signature is defined
using an element of the Galois field. If

),...,,(110 npppP is a string of bytes, then we define the

component s-signature as

1
1

0

:),(

 n

n

pPs

The complete s-signature is a vector of length m where each
element is a component s-signature defined by consecutive
powers of a primitive element α.

),(),...,,(),,(:)(2
, PsPsPsPs m
m

When we slide a window one character to the right, we update
a component of the s-signature using

 r

w
wrrrrwr

wrrr

pppppsp

ppps

),...,,,(,

),...,,(,

121

21

As we want to use s-signatures as hashes of the whole chunk,
we combine calculating the compound s-signature of the
chunk seen so far with updating the signature of the window
as it slides character by character to the right. When we
process one more byte in the chunk, we update all components
of the s-signature using

 nnn ppppsppps),...,,(,),...,,(, 11010

and calculate the window signature from

),...,,,(,),...,,,(,

),...,,(,

12101210

21

r
w

wr

wrrr

ppppspppps

ppps

We set a chunk boundary if the window s-signature is zero.
This is done by comparing two compound signatures,
beginning at the left boundary of the current chunk and ending
just before or at the end of the window. The condition is

),...,,(,),...,,(, 110110 r
w

wr pppsppps

 Each time we process a new character, we upgrade the s-
signature of the chunk seen so far. Per component of the s-
signature, processing this character costs us one addition
(exclusive-or) and one Galois field multiplication, which we
can implement as a table lookup. We then test for a chunk
boundary, which costs us also an addition (exclusive-or) and a
Galois field multiplication per component.

Comparing the costs of calculating s-signatures and Rabin
fingerprints, we obtain the same number of table look-ups and
exclusive-or operations. Thus, operationally, neither method
has an advantage. We prefer algebraic signatures because we
can prove their suitability as good hash functions. The
argument of our paper (chunk boundary calculations can be
re-used for obtaining additional bytes of the hash at no costs)
is valid for either algebraic signatures or Rabin fingerprints.

Figure 2: Pseudo-Code for Chunk Boundary Calculation

III. IMPLEMENTATION

We use an s-signature of size two bytes and use a small
window of four bytes. Internally, we maintain a circular buffer
in order to store the last four s-signatures of the chunk seen so
far. Because s-signatures are very good hash function (as we
will show in the next section) we chose the small window
size, though the method carries directly over to larger
windows. The two byte size of the s-signature implies that we
will break on average after 216 bytes, or equivalently, that the
average chunk size is 64 kB. This value is higher than usually
used, but we can modify the condition in order to break more
frequently.

The properties of the s-signature (Section IV) guarantee that
we will break if we encounter four zero bytes in a row. This
allows us to check without additional costs if we have reached
a longer run of zeros. We do not need to store these zeros
explicitly, but can compress the file by storing the number of
zeros encountered instead.

We give pseudo-code of our implementation in Fig. 2. We
chose a fixed primitive element α and generate multiplication
tables for multiplication by α, α2, α4, and α8. These elements
are the variables a, a2, a4, and a8 in the code. We store s(α, .)
and s(α2, .) in variables p1 and p2. When we process a new

character c of the file, we actualize p1 and p2 using p1 =
αp1c and p2 = α2p2c. We then store the tuple (p1,p2) in
the circular buffer of size four. However, before we overwrite
the value, we retrieve the tuple (q1, q2) previously stored
there, which is the s-signature of the chunk four characters
before. These values are used to test the break condition q1α4
= p1 and q2α8 = p2. The multiplications mult with various
constants are implemented by table look-up using a table with
256 entries.

A break is triggered whenever two values of 16 bits each
are equal. Since both values behave like random numbers, this
happens with probability 2-16. If we want to have breaks
happen more frequently, we can calculate the logical AND of
both sides with a mask with l bits set, leading to average
chunk sizes of 2l bytes.

We give the complete algorithm for chunk boundary
termination in Fig. 2. There, we maintain a circular buffer (oc)
to contain the previous four chunk signatures and use i as an
index into this buffer. Since our window size of four is a
power of two, incrementing the index is particularly efficient
since

i = (i+1) & m
accomplishes the increment modulo 2k with m = 2k–1.

We verified the efficiency of our algorithm experimentally.
Our results in Table I show that on our test machine (with an
Intel Duo processor with clock rate 2.3 GHz), chunk boundary
calculation run about twice as fast as an implementation of
MD5 from RSA Security, Inc. (1991). SHA-1 was 20%
slower than MD5. Calculating the complete chunk hash as an
algebraic signature of 16 bytes unfortunately run 3.8 times
slower than MD5. Thus, our initial hope of integrating
boundary calculation and chunk hash calculation proved to be
infeasible using algebraic signatures. Newer processors have
new machine instructions in order to implement AES and
other cryptographic algorithms faster and on these
architectures, algebraic signature calculation could also run
faster.

TABLE I: Throughput of MD5 and Chunk Boundary Calculation

TASK THROUGHPU
T

MD5 1.939 GB/sec
Chunk Boundary Determination 4.267 GB/sec

IV. ADDED ANTI-COLLISION ASSURANCE

A collision is a situation where chunk signatures coincide
while the chunks themselves differ. The result of a collision in
a deduplication system is that the incoming file is not stored
correctly, rendering it essentially unusable. A chunk collision
therefore always constitutes data loss. We now first calculate
the added anti-collision assurance assuming a perfectly flat
hash function (where each value of the hash is taken with the
same probability) and then discuss the flatness of algebraic
signatures.

A. A Bound for Storage System Size Based on Anti-

i = 0
for j in range(4):
oc[j] = (0, 0)

while True:
 c = getNextCharacter(file)
p1 = mult(a,p1) ˆ c
p2 = mult(a2,p2) ˆ c
(q1, q2) = oc[i]
if mult(a4, p1), mult(a8, p2) & mask
 == (p1, p2) & mask:

trigger_chunk_boundary()
oc[i] = (p1, p2)
i = i+1 mod 4

Collision Assurance

The problem of calculating the probability of one or more
collisions in a system with N chunks is better known as the
Birthday Paradox. Good approximations for the collision
probability are known [15], but are strictly valid only if each

0 5 10 15 20
Nines1012

1015

1018

1021

1024

Max Chunks

16B

18B

20B

Figure 3: Maximum Number of Chunks for perfectly flash hash
functions of 16, 18, and 20 bytes in dependence on the number of
nines in the anti-collision assurance.

value of the signature is equally likely. In this case, a
reasonable approximation for the collision probability if there
are 2m possible hash values is

)
2

(exp1)(
1

2

col

m

N
mp

This number applies to a signature of m bits. We measure
resilience against the existence of even one collision with the
assurance, which we define to be the probability that there is
no collision in the system. We usually measure assurance in
terms of numbers of nine. For instance, an assurance level of
six nines states that the probability of no collision is
99.9999% and corresponds to a value of .000001.0col p

To be acceptable, the assurance against even one collision in
the system needs to be higher than the assurance against any
other type of data loss such as a combination of disk drive
failures. If n is the number of nines in the assurance level, then
we have to choose = 10-n as our assurance target.
Accordingly, for the probability of a collision to be less than a
given assurance target , we solve the corresponding
inequality and obtain

12)1(ln m-εN

As we choose <<1, we can use the linear approximation of
the Taylor expansion of the natural logarithm around 1 to
obtain

2/)1(2 mN

with an error of O(). We specify in the number n of nines
of confidence that a system with N chunks does not suffer a

single collision, i.e. we set .10 n If we take the decadic
logarithm of this number, we obtain

)1(150515.0
2

2

)2(log
)1(

2
)(log 10

10

m
n

m
n

N

As a result, the maximum admissible number of chunks in the
storage archive increases by 101.20412 for each additional byte.
Two additional bytes increase the maximum size of the
archive by a factor of 256 and three by a factor of 4096. We
present numerical results in Fig. 3. The x-axis gives the
numbers of nine of assurance while the y-axis gives the
maximum number of chunks. We can multiply this number by
the average chunk size to obtain the maximum storage
capacity of the system (based solely on collision resistance).

For example, if the probability of data loss in the storage
system is estimated at 10-9 per year (a very good value) and
the life of the storage system is estimated to be 100 years (a
very high value), then assurance against a collision should be
better than 10-11. We arbitrarily pick an anti-collision
assurance level of 15 nines. If we use a hash similar to MD5
with 16 bytes, the maximum number of chunks is then
8.6921011. If we use our method to add two bytes to the hash
size, we obtain a maximum of 2.2251014. If the average
chunk size is 4 kB, the maximum size of the storage system
changes from hundreds of petabytes to tens of exabytes,
reaching the limits of current files systems.

B. Flatness of Algebraic Signatures

Our calculation used the fact that the hash function is
balanced or perfectly flat, i.e. that all values are taken equally
often. This is exactly the case for algebraic signatures and
approximately the case for Rabin fingerprints, if we consider
each bit combination equally likely for a chunk. A verdict on
the flatness of cryptographically secure signatures such as
MD5 and the various members of the SHA-1 and SHA-2
families is much harder to obtain, though Bellone and Kohno
[16] report close to perfect flatness for signatures obtained
from a few bytes of SHA-1 output.

The argument for perfect flatness of algebraic signatures (or
s-signatures) for random text is simple. If all 8b-characters in
a string are equally likely to appear and there is no
dependence between characters, then the probability that a
given signature value is taken is proportional to the inverse of
the total number of possible strings that take this value.

We calculate the probability that a given large random
string X has a particular value c = (c1, c2, ..., cm) as its
(compound) algebraic signature. This gives us m equations

 m
m

m cccXsXsXsXs ,...,,),(),...,,(),,(:)(21
2

,

which we can write equivalently as

mc

c

c

2

1

XA

with matrix

1

1

1

1

)2()1(

3)2(3)1(3

2)2(2)1(2

121

mnmnm

nn

nn

nn

A

Matrix A is a matrix of Vandermonde type, if we order the
columns in reverse order and is therefore of maximal rank m.
The solution of the system of equations forms therefore a
hyperspace of co-dimension m and the number of solutions is
equal for each choice c of signature value. Therefore, if the
input is random, then each value of the compound algebraic
signature is taken with exactly the same probability. The

TABLE II: Actual and expected number of collisions using a two
byte signature on a dictionary (2.259MB) of moderately sized words.

Nr of Words
Colliding

Observed Expected

0 2741 2664.6
1 8539 8533.6
2 13599 13664.5
3 14563 14587.0
4 11645 11678.9
5 7377 7480.4
6 4140 3992.7
7 1835 1826.7
8 721 731.25
9 269 260.2

10 69 83.3
11 30 24.3
12 8 6.5

 13 0 2.1

TABLE III: Actual and expected number of collisions using a three
byte signature on the same dictionary

Nr of Words

Colliding
Observed Expected

0 16 568 642 16 568 642.3
1 207 274 207272
2 1 293 1 296.47
3 7 5.40624

≥ 4 0 0.0169079

TABLE IV: Actual and expected number of collisions using a two
byte signature on a dictionary (2.259MB) of moderately sized words.

Nr of Words
Colliding

Observed Expected

0 19092 19011
1 23370 23527.7

2 14654 14558.7
3 5943 6005.84
4 1194 1858.18
5 455 499.928
6 89 94.8663
7 18 16.7721
8 1 2.5946
9 0 0.35678

10 0 0.0441544
≥ 11 0 0

equivalent statement for MD5 and hashes in the SHA family is
only approximately true. It is not true for Rabin fingerprints,
since Rabin fingerprints are taken modulo a polynomial g. If
we transform g into a binary string and transform it from there
to an arbitrary precision integer, we can say that the Rabin
fingerprint cannot be larger than g. Of course, the number of
values that a Rabin fingerprint cannot take is quite small,
certainly much less than half of the possible values, so that
Rabin fingerprints are still approximately flat.

Our calculations and arguments so far assume completely
random input and we know that these do not make up the
workload of storage systems. We therefore used English text
as input for a test of flatness. To stack the deck against us, we
do not calculate chunk signatures of English text, but instead
use only words.

Our raw data was a list of English words (209881 words or
2.259MB) that is used to perform a dictionary attack on a
password file (in our case, by administrators checking the
strength of user chosen passwords). We calculated the 2-
component signature (2 bytes) of all words with more than 5
letters (65536 words). We then tabulated how often different
words had the same signature. For example, we found that
there were 12 signatures that were each taken by 8 different
words (penultimate line). The result is in Table II. We
compared this number with the expected number of collisions
for a perfectly flat signature of two bytes. The expected value
of collisions is then given by a Poisson distribution with
sample mean 3.202530. These numbers form the right column
in Table II. Just looking at the numbers, the algebraic
signature behaved in this case better than expected. We
evaluated the difference with the 2 value, which we
calculated to be 0.21 using 8+1 classes. While small, this
value is not so small that one could state that the algebraic
signature is flatter than that of a random, perfectly flat
signature.

We repeated the experiment on the same set, but now used a
three component signature and obtained the values in Table
III. The coincidence between observed and expected values is
still remarkably good. The 2 value of 0.479166 confirms this.

We repeated the first experiment on another, smaller
dictionary (Table IV). In this case, observations and expected
values do not match quite as well and the 2 value of 4.79742
confirms this impression. Encouragingly enough, the tail of
the distribution of actual collisions is smaller and the number
of signatures taken by only one word is higher than expected.
Again, the algebraic signature performs better than expected.

We would like to emphasize that the fact that there are
collisions at all is simply a function of the small size of
algebraic signatures. There are 216 possible values that a two-
component algebraic signature can take and any collection
numbering more than that number must have collisions.

V. CONCLUSIONS

We presented a method that exploits work already done for
chunk boundary calculations in order to add two (or three)
bytes to the chunk signature. The additional bytes, obtained at
no additional operational costs, improve the resilience of
deduplication against chunk signature collision. As a result, a
storage system can grow by a factor of 256 or (4096 when
calculating three additional bytes) to provide the same high
assurance level as before the change. Alternatively, the same
two (or three) bytes can be used to switch to a faster, smaller,
but less collision resilient hash function for the chunk
signature. Our method constitutes one of the few cases of a
practically “free lunch” in Computer Science. Integrating the
additional bytes provided by the algebraic signature with the
chunk signature is trivial. Loading the index into memory for
searches and additions is largely independent of the size of
index entries. If we choose a faster, shorter hash function, we
recover the collision resilience of a larger hash while
benefitting from faster calculations.

VI. FUTURE WORK

The work presented here came out of an attempt to combine
chunk boundary determination and chunk signature
calculation in a single pass, using algebraic signatures.
Unfortunately, calculating an algebraic signature of 16 or 20
bytes length turned out to be several times slower than
calculating MD5 or SHA1. This is not surprising since both
hash functions were designed to process several bytes in a
single step, avoiding the costly isolation of a single byte in a
machine word on current processor architectures. Newer chip
architectures (such as the Westmere chips introduced by Intel
in 2010) implement new machine instructions useful for the
calculation of AES and the speed question needs to be
revisited for these machines. Since costs dictate that storage
systems use commodity components, we do not foresee the
use of special hardware to accelerate hash and signature
calculations.

REFERENCES

[1] B. Zhu, K. Li, and H. Patterson, “Avoiding the disk bottleneck
in the data domain deduplication file system,” in Proceedings of
the 6th USENIX Conference on File and Storage Technologies
(FAST), 2008, pp. 269–282.

[2] N. Mandagere, P. Zhou, M. Smith, and S. Uttamchandani,
“Demystifying data deduplication,” in Proceedings of the
ACM/IFIP/USENIX Middleware’08 Conference Companion.
ACM, 2008, pp. 12–17.

[3] D. Bhagwat, K. Eshghi, D. Long, and M. Lillibridge, “Extreme
Binning: Scalable, Parallel Deduplication for Chunk-based File
Backup,” in Proceedings of the 17th IEEE International

Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS 2009),
2009.

[4] G. Forman, K. Eshghi, and S. Chiocchetti, “Finding similar files
in large document repositories,” in Proceedings of the eleventh
ACM SIGKDD international conference on Knowledge
discovery in data mining. ACM, 2005, p. 400.

[5] A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-
bandwidth network file system,” in Proceedings of the
eighteenth ACM symposium on Operating systems principles.
ACM, 2001, pp. 174–187.

[6] S. Quinlan and S. Dorward, “Venti: a new approach to archival
storage,” in Proceedings of the FAST 2002 Conference on File
and Storage Technologies, vol. 4, 2002.

[7] K. Eshghi and H. Tang, “A framework for analyzing and
improving content-based chunking algorithms,” Hewlett-
Packard Labs Technical Report TR, vol. 30, 2005.

[8] M. W. Storer, K. Greenan, D. D. Long, and E. L. Miller,
“Secure data deduplication,” in Proceedings of the 4th ACM
international workshop on Storage security and survivability,
StorageSS ’08. 2008, pp. 1–10.

[9] W. Litwin and T. Schwarz, “Algebraic signatures for scalable
distributed data structures,” in Proceedings. 20th International
Conference on Data Engineering, 2004, pp. 412–423.

[10] M. Rabin, “Fingerprinting by random polynomials,” Technical
Report TR-15-81, Center for Research in Computing
Technology, Harvard University, 1981.

[11] A. Broder, “Some applications of Rabins fingerprinting
method,” in Sequences II: Methods in Communications,
Security, and Computer Science, Springer Verlag, 1993, pp.
143–152.

[12] F. I. P. S. NIST, “FIPS-180-1: Secure Hash Standard,” 1995.
[13] R. Rivest, “RFC1321: The MD5 message-digest algorithm,”

RFC Editor United States, 1992.
[14] K. Greenan, E. Miller, and T. Schwarz, “Optimizing Galois

Field arithmetic for diverse processor architectures and
applications,” in Proceedings of the 16th IEEE Symposium on
Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS), 2008.

[15] Z. Schnabel, “The estimation of total fish population of a lake,”
American Mathematical Monthly, vol. 45, no. 6, pp. 348–352,
1938.

[16] M. Bellare and T. Kohno, “Hash function balance and its impact
on birthday attacks,” in Advances in Cryptology-Eurocrypt
2004. Springer, 2004, pp. 401–418.

