
Algebraic Signatures for Scalable Distributed Data Structures

Witold Litwin
CERIA, Université de Paris 9

Pl. du Mal. de Lattre, 75016 Paris, Fr.
WitoldLitwin@dauphine.fr

Thomas Schwarz
Comp. Engineering, Santa Clara Univ.

Santa Clara, CA 95053, USA
tjschwarz@scu.edu

Abstract

Signatures detect changes to data objects.
Numerous schemes are used, e.g., the
cryptographically secure standards SHA1 and MD5
used in Computer Forensics to distinguish file
versions. We propose a novel signature descending
from the Karp-Rabin signatures, which we call
algebraic signatures because it uses Galois Field
calculations. One major characteristic, new for any
known signature scheme, is certain detection of small
changes of parameterized size. More precisely, we
detect for sure any change that does not exceed n-
symbols for an n-symbol signature. For larger
changes, the collision probability is typically
negligible, as for the other known schemes. We apply
the algebraic signatures to the Scalable Distributed
Data Structures (SDDS). We filter at the SDDS client
node the updates that do not actually change the
records. We also manage the concurrent updates to
data stored in the SDDS RAM buckets at the server
nodes. We further use the scheme for the fast disk
backup of these buckets. We sign our objects with 4-
byte signatures, instead of 20-byte standard SHA-1
signatures that would be impractical for us. Our
algebraic calculus is then also about twice as fast.

1. Introduction

A signature is a string of a few bytes intended to
identify uniquely the contents of a data object (a
record, a page, a file, etc.). Different signatures prove
the inequality of the contents, while same signatures
indicate their equality with overwhelmingly high
probability. Signatures are a potentially useful tool to
detect the updates or discrepancies among replicas (e.g.
of files [Me83], [AA93], [BGMF88], [BL91],
[FWA86], [Me91], [SBB90]). Their practical use
requires further properties, since the updates often

follow common patterns. For example, in a text
document the cut-and-paste (switch) of a large string is
a frequent operation. An update of a database record
often changes only relatively few bytes.

Common updates should change the signatures,
i.e., they should not lead to collisions. The collision
probability, i.e. the probability that the old and the new
value of a record have exactly the same signature,
should be uniformly low for every possible update,
although no schemes can guarantee that the signature
changes for all possible updates.

In this paper, we propose algebraic signatures. An
algebraic signature consists of n symbols, where a
symbol is either a byte or a double byte, though
theoretically symbols can be bit strings of any length f.
There are other signatures, such as CRC signatures, the
increasingly popular SHA1 standard of length 20B
[N95], [KPS02], the 16B MD5 signature used to
ascertain integrity of disk images in computer
forensics, and Karp Rabin Fingerprints (KRF) [KR87],
[B93], [S88], and its generalizations in [C97]. Other
proposed signatures have additional “good” properties
for specific applications e.g., for documents, against
transmission errors, malicious alterations… [FC87],
[KC96], [KC99].

We used algebraic signatures in the context of
Scalable Distributed Data Structures (SDDS). A
typical SDDS file implements a table of a relational
database that consists of a large number of records with
a unique key. A more generic SDDS file is a very
large set of objects with a unique object identifier.
Most known SDDS schemes implement a hash LH* or
LH*RS file, or a range partitioned RP* file [LNS06],
[LS01], [LNS94]. An implementation, the SDDS-2000
prototype system, is available for download [C02].
SDDS are intended for parallel or distributed databases
on multicomputers, grid, or P2P systems [NDLR00],
[NDLR01], [LRS02]. The SDDS-2000 files reside in
distributed RAM buckets and its access times are

currently up to a hundred times better than access to
data on a disk.

We motivate our use of signatures in the SDDS
context as follows. First, some applications of SDDS-
2000 may need to back up the data in the buckets from
time to time on disk. One needs then to find only the
areas that changed in the bucket since the last backup.
For reasons whose detail we give later, but essentially
because we did not design SDDS-2000 for this need,
we could not use the traditional “dirty bit” approach.
Signatures were apparently the only workable
approach.

Second, the signatures of record updates proved
useful. On frequently observed occasions, an
application requests a record update, but the new and
the old record are in fact identical. We compare the
signatures of the before and after image to detect this
problem and avoid unnecessary traffic. If transactions
follow the two-step model, we can prevent dirty reads
by calculating the signatures of the read set between
reading and just before committing the writes.

Our n-symbol algebraic signature is the
concatenation of n power series of Galois Field (GF)
symbols in GF(28) or GF(216). While our algebraic
signatures are not cryptographically secure as is SHA1
or MD5, they exhibit a number of attractive properties.
First, we may produce short signatures, sufficient for
our goals, e.g., only 4B long. Next, the scheme is the
first known, to the best of our knowledge, to guarantee
that objects differing by n symbols have guaranteed
different n-symbol signatures. Furthermore, the
probability that a switch or any update leads to a
collision is also sufficiently low, namely 2-s with
signature length in bits of s. We can also calculate the
signature of an updated object from the signature of the
update and from the previous signature. Finally, we
may gather signatures in a tree of signatures, speeding
up the localization of changes. Cryptographically
secure signatures such as the 20B SHA-1 or the 16B
MD5 do not fit our purpose well because they lack the
last properties and because they are unnecessary large.
Interestingly enough, they do not guarantee a change in
signature for very small changes.

Our signatures are related to the Karp Rabin
Fingerprints (KRF) [KR87] [B93] [S88] and its
generalizations in [C97]. A 1-symbol algebraic
signature corresponds to a KRF calculated in a Galois
field and not through modular integer arithmetic. KRF
and our signature share a nice property that allows us
to calculate the signature of all substrings (of given
length) in a larger string quickly. We can thus use both
KRF and algebraic signatures for pattern matching in
strings. However, KRF work with bits and ours with
larger characters such as bytes. Concatenating KRF in
order to obtain the equivalent of our n-symbol

signature does not seem to lead to interesting algebraic
properties such as freedom of collisions for almost
identical pages.

Below, we first describe more in depth the needs
of SDDS for a signature. Next, we recall basic
properties of a GF. Afterwards, we present our
approach, we overview the implementation, and we
discuss the experimental results. We conclude with
directions for the further work.

Figure 1: SDDS architecture with data flow for
a simple key search

2. Signatures for an SDDS

A Scalable Distributed Data Structure (SDDS)
uses the distributed memory of a multicomputer to
store a file. The file itself consists of records or more
generally, objects. Records or objects consist of a
unique key and a non-key portion. They reside in
buckets in the distributed RAM of the multicomputer.
The data structure implements the key-based
operations of inserts, deletes, and updates as well as
scan queries. The application requests these operations
from an SDDS client that is located at the same node of
the multicomputer. The client manages the query
delivery through the network to the appropriate
server(s) and receives the replies if any. (Fig. 1). As
the file grows with inserts, bucket splits generate more
buckets. Each split sends about half of a bucket to a
newly created bucket. Recall that buckets reside
always in main memory of the nodes of the
multicomputer. We originally designed our signatures
to help with bucket back-up and to streamline record
updates, but other applications emerged, which we
present in the conclusion.

2.1. File back-up

We wish to backup an SDDS bucket B on disk.

Since a typical bucket contains many MB worth of
data, we only want to move those parts of the bucket

that differ from the current disk copy. The traditional
approach is to divide the buckets into pages of
reasonably small granularity and maintain a dirty bit
for each page. We reset the dirty bit when the page
goes to disk and set it when we change the page in
RAM. For a backup, we then only move the clean
pages, i.e. those with reset dirty bit. The
implementation of this approach in our running
prototype SDDS-2000 [C02] would demand refitting a
large part of the existing code that was not designed for
this capacity. As is often the case, this appeared to be
an impossible task. The existing code is a large piece
of software that writes to the buckets in many places.
Different students, who left the team since, produced
over the years different related functional parts of the
code.

Our alternative approach calculates a signature for
each page when data should move to the disk. This
computation is independent of the history of the bucket
page and does not interfere with the existing
maintenance of a data structure. This is the crucial
advantage in our context.

More in detail, we provide the disk copy of the
bucket with a signature map, which is simply the
collection of all its page signatures. Before we move a
page to disk, we recalculate its signature. If the
signature is identical to the entry in the signature map,
we do not write the page.

 The slicing of the buckets into pages is somewhat
arbitrary. The signature map should fit entirely into
RAM (or even into the L2 cache into which we can
load it with the prefetch macro). Smaller pages
minimize transfer sizes, but increase the map and the
overall signature calculus overhead. We expect the
practical page size to be somewhere between 512B and
64KB. The best choice depends on the application. In
any case, the speed of the signature calculus is the
challenge, as it has to be small with respect to the disk
write time. Another challenge is the practical absence
of the collisions to avoid an update loss. The ideal case
is a zero probability of a collision, but in practice, a
probability at the order of magnitude of that of
irrecoverable disk errors (e.g. writes to an adjacent
track) or software failures is sufficient. The database
community does not bother dealing with those unlikely
failures anyway so that the equally small possibility of
a collision does not change fundamentally the
situation.

Currently, we implement the signature map simply
as a table, since it fits into RAM. The algebraic
signature scheme allows also structuring the map into a
signature tree. In a tree, we compute the signature at
the node from the signatures of all descendents of the
node. This speeds up the identification of the portions

of the map where the signatures have changed (similar
to [Me83] et al.) More on it in Section 4.1.

2.2. Record Updates

An SDDS update operation only manipulates the

non-key part of a record R. Let Rb denote the before-
image of R and Sb its signature. The before-image is
the content of record R, subject to the update by a
client. The result of the update of R is the after-image
which we call Ra and its signature Sa. The update is
normal if Ra depends on Rb, e.g.,
Salary := Salary + 0.01*Sales. The
update is blind if Ra is set independently of Rb, e.g., if
we request Salary := 1000 or if a house
surveillance camera updates the stored image. The
application needs Rb for a normal update but not
always for a blind one. In both cases, it is often not
aware whether the actual result is effectively Ra ≠ Rb.
As in the above examples for unlucky salespersons in
these hard times, or as long as there is no burglar in the
house.

Typically, the application nevertheless requests the
update from the data management system that typically
executes it. This “trustworthy” policy, i.e., if there is an
update request, then there is a data change,
characterizes all the DBMSs we are aware of. This is
indeed surprising, since the policy can often cost a lot.
Tough times can leave thousands of salespersons with
no sales, leading to useless transfers between clients
and servers and to the useless processing on both nodes
of thousands of records. Likewise, a security camera
image is often a clip or movie of several Mbytes,
leading to an equally futile effort.

Furthermore, on the server side, several clients
may attempt to read or update concurrently the same
SDDS record R. It is best to let every client read any
record without any wait. The subsequent updates
should not however override each other. Our approach
to this classical constraint is freely inspired by the
optimistic option of the concurrency control of MS-
Access, which is not the traditional one in the database
literature, e.g. [LBK02].

The signatures for SDDS updates are useful in this
context as follows. The application that needs Rb for a
normal update, requests from the client a search
operation for key R and eventually receives the record
Rb. When the application has finished its update
calculation, the application returns to the client Rb and
Ra. The client computes Sa and Sb. If Sa = Sb, then the
update actually did not change the record. Such
updates terminate at the client. The client sends Ra and
Sb to the server only if Sa ≠ Sb. The server accesses R
and computes its signature S. If Sb = S, then the server
updates R to R := Ra. Otherwise, it abandons the update

because of a conflict. A concurrent update must have
happened to R in the time since the client read Rb and
the server received its update Ra. If the new update
proceeded, it would override the intervening one,
violating serializability. The server notifies the client
about the rollback, which in turn alerts the application.
The application may read R again and redo the update.

For a blind update, the application provides only
Ra to the client. The client computes Sa and sends the
key of Ra to the server requesting S. The server
computes S and sends it to the client as Sb. From this
point on, the client and the server can proceed as in a
normal update. Calculating and sending S alone as Sb
already avoids the transfer of Rb to the client. It may
also avoid the useless transfer of Ra to the server. These
can be substantial savings, e.g., for the surveillance
images.

The scheme does not need locks. In addition, as
we have seen, the signature calculus saves useless
record transfers. Besides, neither the key search, nor
the insert or deletion operations need the signature
calculus. Hence, none of these operations incurs the
concurrency management overhead. All together, the
degree of concurrency can be high. The scheme
roughly corresponds to the R-Committed isolation
level of the SQL3 standard. Its properties make it
attractive to many applications that do not need
transaction management, especially, if searching is the
dominant operation, as is the case in general for an
optimistic scheme.

The scheme does not store the signatures.
Interestingly, the storage overhead can be zero. This is
not possible for timestamps, probably the approach of
MS Access, although that overhead is usually
negligible, and hence perfectly acceptable in practice.
In fact, it can still be advantageous to vary the
signature scheme by storing the signature with the
record. As we show later, the storage cost at the server
is typically negligible, of only about 4B per signature.
The client sends in this case also Sa to the server which
stores it in the file with Ra if it accepts the update.
When the client requests R it gets it with S. If the client
requests S alone, the server simply extracts S from R,
instead of dynamically calculating it. All together, one
saves the Sb calculus at the client and that of S at the
server. Also, and perhaps more significantly in
practice, the signature calculus happens only at the
client. Hence, it is entirely parallel among the
concurrent clients. This can enhance the update
throughput even further.

Whether we store the signature or not, the main
challenge remains the speed of the signature. Since a
SDDS key search or a SDDS reaches currently speeds
of 0.1 ms, the time to calculate record signatures
cannot be longer than dozens of microseconds.

Another challenge is the zero or practically zero
probability of collisions to prevent update losses.

2.3. Searches

The frequent SDDS scan operation looks for all
records that contain a string somewhere in a non-key
field. If the SDDS contains many server nodes, if the
search string is long, and if there are few hits, then we
can use the widely used distributed, Las Vegas pattern-
matching algorithm based on Karp-Rabin fingerprints
[KR87], but with variations stemming from the use of
our signatures. In more detail, the client does not send
on the search string, but rather its length and signature.
The SDDS servers receive the signature and then
calculate individually the signatures of all the
substrings of the correct length in their collection of
records. They send back all records with such a string.
While our signature differs from the ones that Karp and
Rabin use, the difference is small enough so that they
retain the property to evaluate quickly all substrings of
a given length in a larger string. The large number of
substrings of a given length in an SDDS file virtually
guarantees collisions, but these false positives are not
dangerous since the client evaluates the strings
returned by the servers.

3. Galois Fields

A Galois field (GF) is finite field. Addition and

multiplication in a GF are associative, commutative,
and distributive. There are neutral elements called zero
and one for addition and multiplication respectively,
and there exist inverse elements regarding addition and
multiplication. We denote GF(2f) a GF over the set of
all binary strings of a certain length f. We only use
GF (28) and GF (216). Their elements are respectively
one-byte and two-byte strings.

We identify each binary string with a binary
polynomial in one formal unknown x. For example,
we identify the string 101001 with the polynomial
x5+x3+1. We further associate with the GF the
generator polynomial g(x). This is a polynomial of
degree f that cannot be written as a product of two
other polynomials other than the trivial products 1⋅f or
f⋅1. The addition of two elements in our GF is that of
their binary polynomials. This means that the sum of
two strings is the XOR of the strings. When we use the
“+” sign between two GF elements, it always refers to
the exclusive or and never to an integer addition. The
product of two elements is the binary polynomial
obtained by multiplying the two operand polynomials
and taking the remainder modulo g(x).

4. Algebraic Signatures There are several ways to implement this calculus.
We use logarithms, based on primitive elements of a
GF, all of which we define below. The order ord (α)
of a non-zero element α of a Galois field is the
smallest non-zero exponent i such that αi = 1. All non-
zero elements in a GF have a finite order. An element
α ≠ 0 of a GF of size s is primitive, if ord(α) = s-1. It is
well known that for any given primitive element α in a
Galois field with s elements, all the non-zero elements
in the field are different powers αi, each with a
uniquely determined exponent i, 0 ≤ i ≤ s-1. All GF
have primitive elements. In particular, any αi is also a
primitive element if i and s-1 are coprime, i.e., without
non-trivial factors in common. Our GFs contain 2f
elements, hence the prime decomposition of 2f-1 does
not contain the prime 2. For our basic values of f = 8
or16, 2f-1 has only few factors, hence there are
relatively many primitive elements. For example, for
f=8 we count 127 primitive elements or roughly half
the elements in the GF.

4.1. Basic properties

We call page P a string of l symbols pi ; i = 0..l-1.

In our case, the symbols pi are bytes or 2-byte words.
The symbols are elements of a Galois field, GF (2f) (f =
8, 16). We assume that l < 2f -1.

We define logarithms with respect to a given
primitive element α. Every non-zero element β is a
power of α. If β = αi, we call i the logarithm of β with
respect to α and write i = logα(β) and we call β the
antilogarithm of i with respect to α and write
β = antilogα(i). The logarithms are uniquely
determined if we choose i to be 0 ≤ i ≤ 2f-2. We set
logα (0) = -∝ .

We multiply two elements β and γ by the
following formula which uses addition modulo 2f-1:

antilog (log () log ()).α α αβ γ β⋅ = + γ

P

 Let α = (α1…αn) be a vector of different non-zero
elements of the Galois field. We call α the n-symbol
signature base, or simply the base. The (n-symbol) P
signature or, simply, P signature, based on α, is the
vector

1 2
sig () (sig (),sig (),...,sig ())

n
P P Pα α α=α

where for each α we set
1

0
sig () l i

ii
P pα α−

=
= ∑ .

We call each coordinate of sigα the component
signature.

The n-symbol signature has some interesting
properties that depend on the choice of the coordinates.
We use primarily the following one where the
coordinates are consecutive powers of the same
primitive element α.

α = (α, α2, α3…αn) with n << ord(a) = 2f - 1.
In this case, we denote sigα as sigα,n. Clearly, the

collision probability of sigα,n can be at best 2-nf. If n
= 1, this is probably insufficient. We also experimented
with a different n-symbol signature sig’

α,n where all
coordinates of α are primitive:

α = (α, α2, α4, α8…α2n).
To implement this formula, we create one table for

logarithms of size 2f symbols. We also create another
one for antilogarithms of size 2f⋅2. That table has two
copies of the basic antilog table. It accommodates
indices up to size 2f⋅2 and avoids the slower modulo
calculus of the formula. For our choices of f, both
tables should fit into the cache of most current
processors (not all for f = 16). We also check for the
special case of one of the operands being equal to 0.
All together, we obtain the following simple C-pseudo-
code:

Since α is primitive and since powers of 2 have no
common factor with 2f-1, all coordinates of sig’α,n are
primitive. As we will see when we discuss cut-and-
paste operations, sig’α,n has different properties. The
basic new property of the sigα,n signature is that any
change of up to n symbols within P changes the
signature for sure. This is our primary rationale in this
scheme. More formally, we stay this property as
follows.

Proposition 1: Provided the page length l is l < ord(α)
= 2f –1, sigα,n signature discovers any change of up to n
symbols per page. GFElement mult(GFElement left,GFElement

right) {
 if(left==0 || right==0) return 0;

Proof: As α is primitive and our GF is GF (2f) we
have ord(α) = 2f – 1. Assume that the file symbols at
locations i1, i2, … in has been changed, but that the
signatures of the original and the altered file are the
same. Call dν the difference between the respective
symbols in position iν. The difference of the
component signatures is then:

 return
antilog[log[left]+log[right]];
}

In terms of Assembly language instructions, the
typical execution costs of a multiplication are two
comparisons, four additions (three for table-look-up),
three memory fetches and the return statement.

2

1 1 1

0 , 0 , ... 0
n n n

i i nid dν ν ν
ν ν

ν ν ν

α α α
= = =

= =∑ ∑ ∑ dν =








.

The dν values are the solutions of a homogeneous
linear system:

() () () () ()
() () () () ()
() () () () ()

() () () () ()

31 2 4

31 2 4

31 2 4

31 2 4

31 2 4

2 2 2 2 2 1

23 3 3 3 3

3

4 4 4 4 4
4

0.

n

n

n

n

n

i ii i i

i ii i i

i ii i i

i ii i i

nn n n n ni ii i i

d
d
d
d

d

α α α α α

α α α α α

α α α α α

α α α α α

α α α α α


         ⋅ =          









.

The matrix is again of Vandermonde type, hence
is invertible. This implies that every possible vector in
GF(2f)n is the signature of a page with all but the first n
symbols equal to zero, and of only one such page.
Consider now an arbitrary vector s in GF(2f)n. Each
page of form (0,…,0,xn+1,xn+2,…, xl) has some vector t
in GF(2f)n as its signature. For any s, t there is then
exactly one page (x1,…,xn,0,…0) that has s-t as the
signature. The page (x1,…,xn, xn+1, xn+2,…, xl) has
therefore signature s. Thus, the number of pages that
have signature s is that of all pages of form
(0,…,0,xn+1,xn+2,…, xl). There are 2f(l-n) such pages.
There are furthermore 2fl pages in total. A random
choice of two pages leads thus to the same signature s
with probability 2f(l-n) / 2fl, which is 2-fn. Assuming the
selections of all possible pages to be equally likely, our
proposition follows. qed

The coefficients in the first row are all different, since
the exponents iv < ord(α). The matrix is of
Vandermonde type, hence invertible. The vector of
differences (d1,d2...dn)t is thus the zero vector. This
contradicts our assumption. Thus sigα,n signature
detects any up to n-symbol change. qed

Notice that Proposition 1 trivially holds for sig’

α,n
with n ≤ 2. More generally, it proves best possible
behavior of sigα,n scheme for changes limited to n
symbols. An application can however possibly change
up to l > n symbols. We now prove that the sigα,n
scheme still exhibits the low collision probability that
we need in a signature scheme.

Proposition 2: Assume page length l < ord(α) and that
every possible page content is equally likely. Then the
signatures sigα,n of two different pages collide
(coincide) with probability of 2-nf.

Proof: The n-symbol signature is a linear mapping
between the vector spaces GF(2f)l and GF(2f)n. This
mapping is an epimorphism, i.e., every element in
GF(2f)n is the signature of some page, an element of
GF(2f)l. Consider the map φ, which maps every page
with all but the first n elements equal to zero to its
signature. Thus, φ: GF(2f)n → GF(2f)l, (x1,…,xn) →
sigα,n ((x1,…,xn,0,…0)), and:

() () () ()
() () () ()
() () () ()

() () () ()

1 2

2 3 4

2 2 2 2 12 2 3 4

23 3 3 33 2 3 4
3

4 4 4 44 2 3 4 4

2 3 4

φ()

n

n

n

n

n

nn n n nn n

(x ,x ,...,x)

x
x
x
x

x

α α α α α

α α α α α

α α α α α

α α α α α

α α α α α

=


    
   
   
  ⋅  
  
  
     

 









1

Notice that Proposition 2 also characterizes sig2
α,n

for n ≤ 2. We called our scheme “algebraic” because it
has interesting algebraic properties. We now turn to
state and prove the more important ones, starting with
one that shows how our algebraic signature behaves
when we change the page slightly. In short, the
signature of the changed page is the old signature
changed by the signature of the change. Slight changes
are common in databases, where a typical attribute
consists only of a few symbols. Proposition 3 below
then allows us to calculate quickly the new signature of
the record without having to scan in the complete
record. Another application, which we use in
[XMLBLS03], checks whether a bunch of updates to a
record actually took place. We do this by calculating
the signature of the record before the update. We then
calculate the signature of the record after the changes
first based on Proposition 3 and then by rescanning the
record. If the two signatures coincide, then we trust
that all updates have been performed correctly. For
example, we see the blocks in a RAID Level 5 scheme
as records (of length 512B or a multiple of that value,
depending on the file system.) We maintain a log of
all block changes. A daemon removes old entries in
the log when they are no longer needed for recovery.
This daemon uses Proposition 3 to check that all
updates in the log – whether about to be removed or
not – have been performed. This scheme amounts to a
hybrid between a journaling file system and a classical
system.


 1, , ,r r sq q q

Proposition 3: Let us change P = (p0, p1, … pl-1) to
page P’ where we replace the symbols starting in
position r and ending with position s-1 with the string

+ − . We define ∆-string as ∆ = (δ0, δ1, …,

δs-r-1) with δi = pr+i – qr+i . Then for each α in our base
α we have:

 sig (') sig () sig ().rP Pα α αα= + ∆

Proof: The difference between the signatures is:
1

1

1

1

0

sig (') sig () ()

(())

()

()

sig ().

s
i

i i
i r

s
r i r

i i
i r
s

r i r
i r

i r
s r

r i
i

i
r

P P q p

q p

α α

α

α

α α

α δ α

α δ α

α

−

=

−
−

=

−
−

−
=

− −

=

− = −

= −

=

=

= ∆

∑

∑

∑

∑
qed

As the final property, we present the behavior of

algebraic signatures when a cut-and-paste operation
changes the page. Proposition 1 states that the
algebraic signature detects the change it if we move a
string of length up to n/2. This is of course very
limiting. Proposition 2 only gives an error probability.
The base α = α0, α1, … αn-1, 0 ≤ i ≤ n-1, where every
αi is primitive, has the largest possible ord (αi) for each
αi. The sig’

α,n scheme appears intuitively preferable in
this context to sigα,n and the following proposition
confirms the conjecture formally.

Figure 2: Illu
operation.

Proposition 4:
indices r, s, t of
signature sigα w
ord(αi) above the
T of length t beg
position s in P
probability that s

Proof: We deno
at least n symbo

Figure 2. We only treat the case of length(B) ≥ n, the
other one is analogue. Without loss of generality, we
assume a forward move of T within the file from
position r to position s. A backward move just undoes
this operation and thus has the same effect on the
signature. Figure 2 defines names for the regions of
the block and makes a spurious case distinction
depending on whether r+t < s or not. For any α ∈{α0,
α1…αn-1}, the α signature of the “before” page (the top
scheme for both situations) is

oldsig ()

sig () sig () sig () sig ()r r t s t

P

A T B
α

α α αα α α+ +

=

+ + + Cα

.

The after page signature is
newsig ()

sig () sig () sig () sig ().r s s t

P

A B T
α

α α α αα α α +

=

+ + + C

T

The difference of the two signatures is:

()

new oldsig () sig ()

sig () sig () sig () sig ()

()sig () ()sig ()

(1)sig () (1)sig () .

r r t r s

r s r r t

r s t

P P

T B B

T B

T B

α α

α α α α

α α

α α

α α α α

α α α α

α α α

+

+

− =

+ + +

+ + + =

+ + +

=

Since our addition is the bitwise XOR, the negative is
the same as the positive and no negative sign is
missing in this expression. The expression is zero only
if the right hand side, or the following expression,
where we use γi as an abbreviation, is zero:

1

size()-1 1
1

 (1)(1) sig () sig ()
i i

s t
i i

B n
s t

T Bα α

ν ν

α α −

−
−

+ + +

 +
A
A

A
A

r

r

stration o

Assume an
appropriate
here base α
 length of P

inning with
. If all T
igα(P) chang

te B the rem
ls or T co

B
T

 s
r

b

0

(1)(1) sig ()
ii i i i

n

T bα ν ν
ν ν

α α α α
= =

= + + + +∑ ∑
1

0

n

i i bν .ν
ν

γ α
−

=

= +∑ C
C

T
B

Pn
Pol
C
C

 We now fix the whole situation with the exception of
the first n symbols in B. The change in signature is:

1 1 1

0 0 1 1 1 1
0 0 0

, , ...,
n n n

n nb b bν ν ν
ν ν

ν ν ν

γ α γ α γ α
− − −

− −
= = =

ν+ + + 
 
 

∑ ∑ ∑ =

T

f

arb
siz
 =
, 0

po
 a
es

in
nta
B

B
 T
the cu

itrary p
es, Figu
 α0,α1,…
 ≤ i ≤ n

sition r a
re equ
 is 2-nf.

der B =
ins at l
Pol
Pn

 s
t and paste

age P and three
re 2. We use a
αn-1 has every

-1. Cut a string
nd move it into

ally likely, the

 P-T. B contains
east n symbols,

1 1 1

0 1 1 0 1 1
0 0 0

(, , ...,) , , ..., .
n n n

n nb b bν ν ν
ν ν

ν ν ν

γ γ γ α α α
− − −

− −
= = =

ν+  
 
 
∑ ∑ ∑

bν

which is zero if and only if:

  
 

1 1 1

0 1 1
0 0 0

, ,...,
n n n

nb bν ν ν
ν ν

ν ν ν

α α α
− − −

−
= = = 
∑ ∑ ∑

 0 1 1(, ,...,).nγ γ γ −=
The left hand side is a linear mapping in the (b0, b1, …
bn-1), which has a matrix that is invertible, because it
has a Vandermonde type determinant. Therefore, there
exists only one combination (b0, b1, …, bn-1) that is
mapped by the mapping onto the right hand vector.
This combination will be attained for a randomly
picked B with probability 2-nf. qed

To obtain the strongest property of a sigα,n
signature schema, one should thus use α whose αi have
the largest order. The natural choice are primitive αi.
Assuming the need for n > 2, this is precisely the
rationale in sig2

α,n. Notice that for GF (216), the
collision probability is already small enough in
practice, we discuss this in detail in Section 5.2.

 At this stage of our research, the choice of sig’
α,n

appears only as a trade-off between smaller probability
of collision for possibly frequent updates (switches
here), and the zero probability of collision for updates
up to any n symbols. We are able only to conjecture
that there is α in GF(28) or GF(28) for which
Proposition 1 and 2 holds for sig’

α,n with n > 2. We did
not pursue the investigation further. For our needs, n
= 2 for GF (216) was sufficient (Section 5.2). As
sig’

α,2 = sigα,2, the properties of both schemes coincide
anyway.

4.2. Compound Algebraic Signatures

Our signature schemes keep the property of sure

detection of n-symbol change as long as the page size
in symbols is at most 2f – 2. For f = 16, the limit on the
page size is almost 128 KB. Such granularity suffices
for our purpose. There might be many pages in an
SDDS bucket that can reach easily 256 MB for SDDS-
2000. We can view the collection of all the signatures
in a bucket as a vector. We call this vector the
compound signature (of the bucket). More generally,
we qualify a compound signature of m pages, as m-
fold. The signature map of Section 2.1 implements a
compound signature.

The practical interest of the compound signatures
stretches beyond our motivating cases. Assume that we
have a large string A. Proposition 1 guarantees only
that we find small changes through our signature if A
does not contain more than 2f-1 characters. To apply
Proposition 1 nevertheless, we break A into m pages of
length smaller than ord(α)–1, α ∈ α. The resulting m-
fold compound signature then allows us to find any
change involving up to n characters in any of the pages
for sure.

If we have many pages (m>>1), we can use the
following Proposition 5 to speed up the comparison of
compound signatures by calculating the signature of a
group of contiguous pages. We can do the same to a
number of these “super-signatures” to obtain higher-
level signatures. We can then organize these higher
signatures in a tree structure. We always calculate
algebraically the higher-level signature in a parent
node from all the lower-level signatures in the children
nodes. If a signature of a page changes, then all
signatures on a path from a leaf to the node change

(Fig. 3). This capability of compound signatures can be
of obvious interest to our SDDS file backup
application.

Figure 3: Signature tree with 3 levels of
signatures.

The following proposition states the algebraic

properties for only two pages of possibly different
sizes. It can be easily generalized to more pages.

Proposition 5: Consider that we concatenate two pages
P1 and P2 of length l and m, l + m ≤ 2f-1, into page
(area) denoted P1P2. Then, the signature sigα,n
(P1P2) is as follows, where sig denotes sigα,n :

sigα,n (P1P2) =
(sig(P1)+al⋅ sig(P2), sig(P1)+a2l⋅ sig(P2),…,

 sig(P1)+anl⋅ sig(P2).

Proof: The proof consists in applying the following
lemma to each coordinate α of α.
 qed

Lemma. We note sigα,1 as sigα. Then, the 1-symbol
sigα (P1P2) signature is

sigα (P1|P2) = sigα(P1)+al sigα (P2).

Proof: Assume that P1 = {s1,s2,…,sl} and P2 = {sl+1,
sl+2, …, sl+m}. Then

1 2

1

sig (|)
l m

v

P P

s

α

ν

ν

α
+

=

= ∑

1 1

l l m

l

s sν ν
ν ν

ν ν

α α
+

= = +

= +∑ ∑

1 1

1 2

= sig () sig ().

l m
l

l

l

s s

P P

ν ν
ν ν

ν ν

α α

α α α

α

+
= =

= +

+

∑ ∑
qed

Proposition 5 holds analogously for sig2
α,n.

Together, all the propositions we have formulated

prove the potential of our two schemes. We are
currently investigating further algebraic properties.

4.3. Reinterpretation of Symbols

The following meta-proposition turns out to be

important when we tune the speed of the signature
calculation.

Proposition 6: Let ϕ be a function that maps the space
of all symbols into itself and is one-to-one. (With
other words, ϕ is a bijection of GF(2f).) Define the
twisted signature

1
, 0

sig () ()l i
ii

P pϕ α ϕ α−

=
= ∑

and similarly
1 2, , , ,sig () (sig (),sig (),...,sig ())

n
P P Pφ ϕ α ϕ α ϕ α=α P

Then Propositions 1 to 5 also apply mutatis mutandis
to the twisted signatures.

The proof is simply by inspection.

5. Experimental Implementation

5.1. Speeding up Galois Field arithmetic

We can tune the signature calculation. First,

according to Proposition 6, we can interpret the page
symbols directly as logarithms. This saves a table
look-up. The logarithms range from 0 to 2f-2
(inclusively) with an additional value for log(0). We
set this one to 2f-1. Next, the signature calculations
forms a product with αi, which has i as the logarithm.
Thus, we do not need to look up this value. The
following pseudo-code for sigα,1 applies these
properties. It uses as parameters the address of an
array representing the bucket and the size of the
bucket. The constant TWO_TO_THE_F is 2f. The
type GFElement is an alias for the appropriate integer
or character type. The application to the calculation of
sigα,n is easy.

GFElement signature(GFElement *page, int
pageLength) {
 GFElement returnValue = 0;
 for(int i=0; i< pageLength; i++) {
 if(page[i]!=TWO_TO_THE_F-1)
 returnValue ^= antilog[i+page[i]];
 }
 return returnValue;
}

In our file backup application, the bucket usually
contains several pages so that we typically calculate
the compound signature. To tune the calculus, one

should consider the best use of the processor caches,
i.e., L1 and L2 caches on our Pentium machines. To
increase locality of memory accesses, we first loop on
the calculation of sigα,1 for all the pages, then move to

and so on. Our experiments confirmed that this

is better.
2 ,

sig
nα

5.2. Experimental Performance

We analyzed the performance of the signature

scheme based on sigα,1. Our test bed consisted of 1.8
GHz Pentium P4 nodes and from 700 Mhz Pentium P3
nodes over a 100 Mbs Ethernet. We used simulated
data and varied the way we calculate the signature.
We did the same for sig’

α,n. Not surprisingly, both
schemes needed about the same calculation times.

We tested our implementation of the signature
calculus with simulated data. We varied the details of
the sigα,n and the sig’

α,n calculus implementation and
experimented with various ways of compounding. As
was to be expected, the calculation times of sigα,n and
the sig’

α,n where the same. Finally, we have ported the
fastest algorithm of sigα,n calculus to SDDS-2000.

Our sample SDDS had records of about 100 B and
a 4B key. For both n-symbol signature schemes, we
divided the bucket into pages of 16KB and with a 4B
signature per page. We selected this page size as a
compromise between the signature size (and hence its
calculation time) and the overall collision probability
of order 2-32, i.e. better than 1 in 4*109. At one back-
up operation a second, we can expect a collision every
135 years.

Internally, the bucket in SDDS-2000 has a RAM
index because it is structured into a RAM B-tree. The
index is small, a few KB at largest. To break up the
index into pages of the same size as for bucket pages
does not make sense there. We picked a page size of
128 B for the index.

For record updates, we use the scheme where we
calculate signatures on the fly only. Alternatively, we
could have stored a signature with each record. Recall
that the signature calculation is only done for updates
and not for inserts.

We present the experiments and their analysis in
full in [LMS03], but summarize the main results here:

When we calculated signatures not in the context
of SDDS, then the calculation time depended to a large
degree on the type of data used. The longest
calculation was for strings that consisted of completely
random characters in the full range of ASCII and the
shortest for highly structured data such as a spelled out
number repeated several times. We attribute this
behavior to the influence of the various caches.

For a given page size, the calculation times for
sigα,n were linear in n. The actual calculation times of
the 4B long signature sigα,2 (calculated in GF(216), see
below) as finally integrated into SDDS-2000 was 20-
30 ms per 1 MB of RAM bucket, manipulated as a
mapped file. For SHA-1, our tests showed about 50-60
ms. As was desired, it took in the order of dozens of
microseconds to calculate sigα,2 for an index page or
for a record. The time grew linear with the bucket or
record size, and – somewhat surprisingly – turned out
to be independent of the algebraic signature scheme
tested. Probably due to a better use of the cache,
calculating the signature of a 64KB page is relatively
faster than the one of a 16KB page. We contrast these
times with the actual transfer time of 1 MB from RAM
to disk, which is about 300 msec.

Bytes are the smallest usable chunks in a modern
computer because of the need to process text
efficiently. For this reason, we should choose a Galois
field whose elements are bytes or multiple of bytes.
Since the logarithm and antilogarithm tables of a
Galois field GF(2f) have sizes in the order of 2f, we
really only have the choice between GF(216) and
GF(28). Using the first taxes the cache more because
of the larger size of these tables, but the number of
Galois field operations is half of that when we make
the latter choice. Our experiments showed that the
calculation of signatures using GF(216) turned out to be
slightly faster. This justified our final choice to use
sigα,2 based on GF(216) in SDDS-2000.

We have experimented with using signatures to
distinguish between updates that change and those that
in fact do not change a datum (a pseudo-update). The
experimental results are detailed in [H03] and show the
expected savings for pseudo-updates (e.g. an almost
four-fold gain of pseudo-updates over actual updates
for updates of 1KB and a double speed for updates of
100B).

We also ran experiments on a modified SDDS-
2000 implementation that uses signatures to distinguish
between updates that in fact change the record and
those that do not. The latter is a “pseudo-update”. We
did this for blind updates, which – as we recall change
the value of the record absolutely – and for normal
updates, which set the new value of the record based
on the old value. (See Section 2.2 for the scheme.)
The complete results of the experiments are in [H03].
In overview, their results confirm that signature
calculation and record update is fast and that savings
for pseudo-updates are substantial.

In detail, we measured the time to calculate a
signature to be under 5 µsec / KB of data on a 1.8 GHz
Pentium 4 machine. A 700MHz Pentium 3 was
surprisingly about thirty times slower yielding a rate of
158 µsec / KB. This again shows the sensitivity of the

signature scheme to caching. A normal update on the
P4-workstation took 0.614 msec per 1KB record, but a
normal pseudo-update took only 0.043 msec per 1KB
record. The savings amounts to about 90% of the
normal update time. The numbers do not include the
time it takes to access the record over the net, which is
0.237 msec. If we add this time, then the savings for
normal pseudo-updates is only 70%. As expected,
processing times for blind updates are faster, namely
0.8372 msec and 0.2707 msec for a true and for a blind
pseudo-update, respectively. The times include the key
search, the update processing, and the transfer of the
record signature. The savings for pseudo-updates are
again about 70%.

When we experimented with 100B records, the
times were naturally faster. For normal updates we
measured 0.419 msec (true update) and 0.03 msec
(pseudo-update). Including a search time of 0.22 msec
the numbers become 0.63 msec and 0.25 msec,
respectively. The total times for blind updates were
0,51 msec and 0,24 msec. The savings were now about
50%. [H03] gives the numbers for the P3 machines.

Finally, we tested our signature scheme for the
search in the non-key portion of a record, as laid out in
Section 2.3. Since we use GF(216), that is, since we
use symbols of length 2B, and since our records
consists of 1B ASCII characters, our code has to take
care of an alignment problem, that arises when e.g. the
second, third, and fourth byte of a record make up the
string for which we are searching. The searches
stretched over all 8000 records with a 60B non-key
field. We manipulated the bucket so that the third-last
record contained the 3B string for which we were
searching. The total search time was 1.516 sec, but
traversing the bucket already took 0.5 sec. Without
this time, we search at a speed of 2 sec per MB. We
compared this time with a Karp Rabin type search
where instead of our signature we use the byte-wise
XOR. This took 1.504 sec (instead of 1.516 sec).
Thus, most of the calculation time is spend on memory
transfers and very little on Galois field arithmetic.

6. Conclusion and Future Work

Our signature scheme has the new (to our

knowledge) property of guaranteed detection of small
changes and also allows algebraic operations over the
signatures themselves. (Cohen [C97] describes general
extension of Karp-Rabin fingerprinting to obtain
similar algebraic properties for use in searching. These
properties are also used in finding similarities amongst
files, e.g. [ABFLS00]. Together with the high
probability of detection of any change, including cut-
and-paste operations, small overhead, and fast
signature calculation, our approach proved to be useful

for the SDDS bucket backups and SDDS record
updates that motivated our investigation. Our
experiments allowed us to successfully add the sigα,n
scheme to SDDS-2000 system.

6.1. Signature Properties and Implementation

In the future, we should determine additional

algebraic properties of the scheme. We know that
sig2

α,n for some α does not have the property of
Proposition 1, i.e. that it detects small changes with
certainty, but whether this is true for all α remains an
open question. In greater generality, is it possible to
find a base α consisting of primitive elements that
satisfies Proposition 1? It appears that an answer
depends on deep properties of finite fields.

We are currently exploring methods to increase
the speed of the signature calculation. In a nutshell,
the current multiplication operation evaluates an anti-
logarithm for every symbol in the page. By using a
technique adapted from Broder [B93], we can
implement an alternate way to calculate signatures.
Preliminary results suggest that it is two to three times
faster than the method reported here.

We did not explore the Prefetch macro that allows
us to save additional calculation time by preloading the
L1 and L2 caches in an Intel x86 architecture.

The use of signature trees for computing the
compound signatures and explore the signature maps is
an open research area.

6.2. Additional Applications

In the context of SDDS, we can apply our scheme

to the automatic eviction of SDDS files when several
files share an SDDS server whose RAM became
insufficient for all the files simultaneously, [LSS02].
Our signature scheme appears to be a useful tool to
manage the cache at the SDDS client and to keep the
cache and server data synchronized.

There is also an interesting relationship between
the algebraic signatures and the Reed-Salomon parity
calculus we use for the high-availability SDDS LH*RS
scheme, [LS00]. In this scheme, we use GF
calculations to generate the parity symbols of a Reed
Solomon code ECC (error-control-code). LH*RS
combines a small number m of servers into a reliability
group and adds k parity servers to the ensemble. The
parity servers store parity records whose non-key data
consists of parity symbols. We can reconstruct
contents of lost servers as long as we can access the
data in m out of the m+k total servers in a reliability
group. LH*RS needs to guarantee consistency between
parity and data servers, i.e., parity and data servers

need to have seen the same updates to records. We
have shown the existence of an algebraic relation
between the signatures of data and parity records
which can be used to confirm this consistency between
parity and data buckets. The importance of maintaining
consistency between parity records and client data
records is not unique to SDDS. In a RAID Level 5
disk array, the same problem exists between the parity
blocks and the client data blocks. [XMLBLS03]
proposes the same scheme in the context of a very
large disk farm that uses mirroring and / or parity
calculus to secure data against disk failure.

Our techniques should also help other database
needs. Especially, they should prove beneficial for a
RAM-based database system that typically needs to
image the data in RAM to disk as well. RAM sizes
have reached GB size and operating system and
hardware support is becoming available for even larger
RAM. This should add to the attraction of RAM-based
database system at the costs of traditional disk-based
database systems, [NDLR01].

Our signature-based scheme for updating records
at the SDDS client should prove its advantages in
client-server based database systems in general. It
holds the promise of interesting possibilities for
transactional concurrency control, beyond the mere
avoidance of lost updates.

Acknowledgments

We thank Lionel Delafosse, Jim Gray, and Peter

Scheuermann for fruitful discussions. We gratefully
acknowledge the support research grants from
Microsoft Research, from the European Commission
project ICONS (project no. IST-2001-32429), and the
SCU IBM grant 41102-COEN-RSCH-IG-IG09.

Bibliography

[AA93Abdel-Ghaffar,] K. A. S., El-Abbadi, A. Efficient
Detection of Corrupted Pages in a Replicated File. ACM
Symp. Distributed Computing, 1993, p. 219-227.
[ABFLS00] Ajtai, M., Burns, R., Fagin, R., Long, D.
Stockmeyer, L.
Compactly encoding unstructured input with differential
compression.
www.almaden.ibm.com/cs/people/stock/diff7.ps. IBM
Research Report RJ 10187, April 2000.
[BGMF88] Barbara, D., Garcia-Molina, H. , Feijoo, B.
Exploiting Symmetries for Low-Cost Comparison of File
Copies. Proc. Int. Conf. Distributed Computing Systems,
1988, p. 471-479.
[BL91] Barbara, D., Lipton, R. J.: A class of Randomized
Strategies for Low-Cost Comparison of File Copies. IEEE
Trans. Parallel and Distributed Systems, vol. 2(2), 1991, p.
160-170.

[B93] Broder, A. Some applications of Rabin's fingerprinting
method. In Capocelli, De Santis, and Vaccaro, (ed.),
Sequences II: Methods in Communications, Security, and
Computer Science, pages 143--152. Springer-Verlag, 1993.
[C02] Ceria Web site. http://ceria.dauphine.fr/.
[C97] Cohen, J. Recursive Hashing Functions for n-Grams.
ACM Trans. Information Systems, Vol 15(3), 1997, p. 291-
320.
[FC87] Faloutsos, C., Christodoulakis, S.: Optimal Signature
Extraction and Information Loss. ACM Trans. Database
Systems, Vol. 12(5), p. 395-428.
[FWA86] Fuchs, W. Wu, K. L., Abraham, J. A. Low-Cost
Comparison and Diagnosis of Large, Remotely Located
Files. Proc. Symp. Reliability Distributed Software and
Database Systems, p. 67-73, 1986.
[Go99] D. Gollmann: Computer Security, Wiley, 1999.
[H03] Hammadi, B. Suppresions et mises a jour dans le
système SDDS-2000. CERIA research report CERIA-BD-
DEA127.
[KR87] Karp, R. M., Rabin, M. O. Efficient randomized
pattern-matching algorithms. IBM Journal of Research and
Development, Vol. 31, No. 2, March 1987.
[KC 95] Jeong-Ki Kim, Jae-Woo Chang: “A new parallel
Signature File Method for Efficient Information Retrieval”,
CIKM 95, p. 66-73.
[KC99] S. Kocberber, F. Can: “Compressed Multi-Framed
Signature Files: An Index Structure for Fast Information
Retrieval”, SAS 99, p. 221-226.
[KPS02] Kaufman, C., Perlman, R., Speciner, M. Network
Security: Private Communication in a Public World, 2nd Ed.,
Prentice-Hall 2002.
[LBK02] Lewis, Ph., M., Bernstein. A. Kifer, M. Database
and transaction Processing. Addison & Wesley, 2002.
[LNS94] Litwin, W., Neimat, M-A., Schneider, D. RP* : A
Family of Order-Preserving Scalable Distributed Data
Structures. 20th Intl. Conf on Very Large Data Bases
(VLDB), 1994.
[LNS96] Litwin, W., Neimat, M-A., Schneider, D. LH*: A
Scalable Distributed Data Structure. ACM Transactions on
Database Systems ACM-TODS, (Dec. 1996).
[LMS03] Litwin, W., Mokadem, R., Schwarz, T.: Disk
Backup through algebraic signatures in scalable and
distributed data structures. Proc. 5th Workshop on
Distributed Data and Structures, Thessaloniki, June 2003
(WDAS 2003).
[LS00] Litwin, W., Schwarz, Th. LH*RS: A High-
Availability Scalable Distributed Data Structure using Reed
Solomon Codes. ACM-SIGMOD 2000.
[LRS02] Litwin, W., Risch, T., Schwarz, Th. An
Architecture for a Scalable Distributed DBS :Application to
SQL Server 2000. 2nd Intl. Workshop on Cooperative
Internet Computing (CIC 2002), August, 2002, Hong Kong.
[LSS02] Litwin, W., Scheuermann, P., Schwarz Th. Evicting
SDDS-2000 Buckets in RAM to the Disk. CERIA Res. Rep.
2002-07-24, U. Paris 9, 2002.
[Me83] Metzner, J. A Parity Structure for Large Remotely
Located Data Files. IEEE Transactions on Computers, Vol.
C – 32, No. 8, 1983.
[MA00] Michener, J., Acar, T. Managing System and Active-
Content Integrity. Computer, July 2000, p. 108-110.

 [N95] Natl. Inst. of Standards and Techn. Secure Hash
Standards. FIPS PUB 180-1, (Apr. 1995).
[NDLR00] Ndiaye, Y., Diène A., W., Litwin, W., Risch, T.
Scalable Distributed Data Structures for High-Performance
Databases. Intl. Workshop on Distr. Data Structures,
(WDAS-2000). Carleton Scientific (publ.).
[NDLR01] Ndiaye, Y., Diène A., W., Litwin, W., Risch, T.
AMOS-SDDS: A Scalable Distributed Data Manager for
Windows Multicomputers. 14th Intl. Conference on Parallel
and Distributed Computing Systems- PDCS 2001.
[S88] Sedgewick, R: Algorithms. Addison-Wesley
Publishing Company. 1988.
[SBB90] Schwarz, Th., Bowdidge, B., Burkhard, W., Low
Cost Comparison of Files, Int. Conf. on Distr. Comp. Syst.,
(ICDCS 90) , 196-201.
[XMLBLS03] Xin, Q., Miller, E, Long, D., Brandt, S.,
Litwin, W., Schwarz, T. Selecting Reliability Mechanisms for
a Large Object-Based Storage System. 20th Symposium on
Mass Storage Systems and Technology. San Diego. 2003.

http://ceria.dauphine.fr/

	2.1. File back-up
	Record Updates

