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Abstract 
 

Signatures detect changes to data objects. 
Numerous schemes are used, e.g., the 
cryptographically secure standards SHA1 and MD5 
used in Computer Forensics to distinguish file 
versions. We propose a novel signature descending 
from the Karp-Rabin signatures, which we call 
algebraic signatures because it uses Galois Field 
calculations. One major characteristic, new for any 
known signature scheme, is certain detection of small 
changes of parameterized size. More precisely, we 
detect for sure any change that does not exceed n-
symbols for an n-symbol signature. For larger 
changes, the collision probability is typically 
negligible, as for the other known schemes. We apply 
the algebraic signatures to the Scalable Distributed 
Data Structures (SDDS). We filter at the SDDS client 
node the updates that do not actually change the 
records. We also manage the concurrent updates to 
data stored in the SDDS RAM buckets at the server 
nodes. We further use the scheme for the fast disk 
backup of these buckets. We sign our objects with 4-
byte signatures, instead of 20-byte standard SHA-1 
signatures that would be impractical for us. Our 
algebraic calculus is then also about twice as fast.   

 
1.  Introduction 
 

A signature is a string of a few bytes intended to 
identify uniquely the contents of a data object (a 
record, a page, a file, etc.). Different signatures prove 
the inequality of the contents, while same signatures 
indicate their equality with overwhelmingly high 
probability.  Signatures are a potentially useful tool to 
detect the updates or discrepancies among replicas (e.g. 
of files [Me83], [AA93], [BGMF88], [BL91], 
[FWA86], [Me91], [SBB90]). Their practical use 
requires further properties, since the updates often 

follow common patterns.  For example, in a text 
document the cut-and-paste (switch) of a large string is 
a frequent operation.  An update of a database record 
often changes only relatively few bytes.   

Common updates should change the signatures, 
i.e., they should not lead to collisions. The collision 
probability, i.e. the probability that the old and the new 
value of a record have exactly the same signature, 
should be uniformly low for every possible update, 
although no schemes can guarantee that the signature 
changes for all possible updates.  

In this paper, we propose algebraic signatures.  An 
algebraic signature consists of n symbols, where a 
symbol is either a byte or a double byte, though 
theoretically symbols can be bit strings of any length f.  
There are other signatures, such as CRC signatures, the 
increasingly popular SHA1 standard of length 20B 
[N95], [KPS02], the 16B MD5 signature used to 
ascertain integrity of disk images in computer 
forensics, and Karp Rabin Fingerprints (KRF) [KR87], 
[B93], [S88], and its generalizations in [C97].   Other 
proposed signatures have additional “good” properties 
for specific applications e.g., for documents, against 
transmission errors, malicious alterations… [FC87], 
[KC96], [KC99].   

We used algebraic signatures in the context of 
Scalable Distributed Data Structures (SDDS).  A 
typical SDDS file implements a table of a relational 
database that consists of a large number of records with 
a unique key.  A more generic SDDS file is a very 
large set of objects with a unique object identifier.  
Most known SDDS schemes implement a hash LH* or 
LH*RS file, or a range partitioned RP* file [LNS06], 
[LS01], [LNS94]. An implementation, the SDDS-2000 
prototype system, is available for download [C02]. 
SDDS are intended for parallel or distributed databases 
on multicomputers, grid, or P2P systems [NDLR00], 
[NDLR01], [LRS02]. The SDDS-2000 files reside in 
distributed RAM buckets and its access times are 

 



currently up to a hundred times better than access to 
data on a disk.  

We motivate our use of signatures in the SDDS 
context as follows. First, some applications of SDDS-
2000 may need to back up the data in the buckets from 
time to time on disk. One needs then to find only the 
areas that changed in the bucket since the last backup.  
For reasons whose detail we give later, but essentially 
because we did not design SDDS-2000 for this need, 
we could not use the traditional “dirty bit” approach. 
Signatures were apparently the only workable 
approach. 

Second, the signatures of record updates proved 
useful.  On frequently observed occasions, an 
application requests a record update, but the new and 
the old record are in fact identical.  We compare the 
signatures of the before and after image to detect this 
problem and avoid unnecessary traffic. If transactions 
follow the two-step model, we can prevent dirty reads 
by calculating the signatures of the read set between 
reading and just before committing the writes.  

Our n-symbol algebraic signature is the 
concatenation of n power series of Galois Field (GF) 
symbols in GF(28) or  GF(216). While our algebraic 
signatures are not cryptographically secure as is SHA1 
or MD5, they exhibit a number of attractive properties.  
First, we may produce short signatures, sufficient for 
our goals, e.g., only 4B long.  Next, the scheme is the 
first known, to the best of our knowledge, to guarantee 
that objects differing by n symbols have guaranteed 
different n-symbol signatures. Furthermore, the 
probability that a switch or any update leads to a 
collision is also sufficiently low, namely 2-s with 
signature length in bits of s.  We can also calculate the 
signature of an updated object from the signature of the 
update and from the previous signature. Finally, we 
may gather signatures in a tree of signatures, speeding 
up the localization of changes.  Cryptographically 
secure signatures such as the 20B SHA-1 or the 16B 
MD5 do not fit our purpose well because they lack the 
last properties and because they are unnecessary large.  
Interestingly enough, they do not guarantee a change in 
signature for very small changes.   

Our signatures are related to the Karp Rabin 
Fingerprints (KRF) [KR87] [B93] [S88] and its 
generalizations in [C97].  A 1-symbol algebraic 
signature corresponds to a KRF calculated in a Galois 
field and not through modular integer arithmetic.  KRF 
and our signature share a nice property that allows us 
to calculate the signature of all substrings (of given 
length) in a larger string quickly.  We can thus use both 
KRF and algebraic signatures for pattern matching in 
strings.  However, KRF work with bits and ours with 
larger characters such as bytes.  Concatenating KRF in 
order to obtain the equivalent of our n-symbol 

signature does not seem to lead to interesting algebraic 
properties such as freedom of collisions for almost 
identical pages. 

Below, we first describe more in depth the needs 
of SDDS for a signature.  Next, we recall basic 
properties of a GF. Afterwards, we present our 
approach, we overview the implementation, and we 
discuss the experimental results. We conclude with 
directions for the further work.   

 

 
Figure 1: SDDS architecture with data flow for 
a simple key search 

 
 

2. Signatures for an SDDS 
 

A Scalable Distributed Data Structure (SDDS) 
uses the distributed memory of a multicomputer to 
store a file. The file itself consists of records or more 
generally, objects.  Records or objects consist of a 
unique key and a non-key portion.  They reside in 
buckets in the distributed RAM of the multicomputer. 
The data structure implements the key-based 
operations of inserts, deletes, and updates as well as 
scan queries.  The application requests these operations 
from an SDDS client that is located at the same node of 
the multicomputer.  The client manages the query 
delivery through the network to the appropriate 
server(s) and receives the replies if any. (Fig. 1).  As 
the file grows with inserts, bucket splits generate more 
buckets. Each split sends about half of a bucket to a 
newly created bucket. Recall that buckets reside 
always in main memory of the nodes of the 
multicomputer. We originally designed our signatures 
to help with bucket back-up and to streamline record 
updates, but other applications emerged, which we 
present in the conclusion. 
 
2.1.   File back-up 

 
We wish to backup an SDDS bucket B on disk.  

Since a typical bucket contains many MB worth of 
data, we only want to move those parts of the bucket 

 



that differ from the current disk copy.  The traditional 
approach is to divide the buckets into pages of 
reasonably small granularity and maintain a dirty bit 
for each page.  We reset the dirty bit when the page 
goes to disk and set it when we change the page in 
RAM.  For a backup, we then only move the clean 
pages, i.e. those with reset dirty bit.  The 
implementation of this approach in our running 
prototype SDDS-2000 [C02] would demand refitting a 
large part of the existing code that was not designed for 
this capacity. As is often the case, this appeared to be 
an impossible task.  The existing code is a large piece 
of software that writes to the buckets in many places. 
Different students, who left the team since, produced 
over the years different related functional parts of the 
code.  

Our alternative approach calculates a signature for 
each page when data should move to the disk.  This 
computation is independent of the history of the bucket 
page and does not interfere with the existing 
maintenance of a data structure.  This is the crucial 
advantage in our context.  

More in detail, we provide the disk copy of the 
bucket with a signature map, which is simply the 
collection of all its page signatures.  Before we move a 
page to disk, we recalculate its signature.  If the 
signature is identical to the entry in the signature map, 
we do not write the page. 

 The slicing of the buckets into pages is somewhat 
arbitrary.  The signature map should fit entirely into 
RAM (or even into the L2 cache into which we can 
load it with the prefetch macro).  Smaller pages 
minimize transfer sizes, but increase the map and the 
overall signature calculus overhead.  We expect the 
practical page size to be somewhere between 512B and 
64KB.  The best choice depends on the application. In 
any case, the speed of the signature calculus is the 
challenge, as it has to be small with respect to the disk 
write time.  Another challenge is the practical absence 
of the collisions to avoid an update loss. The ideal case 
is a zero probability of a collision, but in practice, a 
probability at the order of magnitude of that of 
irrecoverable disk errors (e.g. writes to an adjacent 
track) or software failures is sufficient. The database 
community does not bother dealing with those unlikely 
failures anyway so that the equally small possibility of 
a collision does not change fundamentally the 
situation.  

Currently, we implement the signature map simply 
as a table, since it fits into RAM.  The algebraic 
signature scheme allows also structuring the map into a 
signature tree.  In a tree, we compute the signature at 
the node from the signatures of all descendents of the 
node.  This speeds up the identification of the portions 

of the map where the signatures have changed (similar 
to [Me83] et al.)  More on it in Section 4.1.  

 
2.2. Record Updates   

 
An SDDS update operation only manipulates the 

non-key part of a record R.  Let Rb denote the before-
image of R and Sb its signature. The before-image is 
the content of record R, subject to the update by a 
client. The result of the update of R is the after-image 
which we call Ra and its signature Sa. The update is 
normal if Ra depends on Rb, e.g., 
Salary := Salary + 0.01*Sales. The 
update is blind if Ra is set independently of Rb, e.g., if 
we request Salary := 1000 or if a house 
surveillance camera updates the stored image.  The 
application needs Rb for a normal update but not 
always for a blind one. In both cases, it is often not 
aware whether the actual result is effectively Ra ≠ Rb. 
As in the above examples for unlucky salespersons in 
these hard times, or as long as there is no burglar in the 
house.  

Typically, the application nevertheless requests the 
update from the data management system that typically 
executes it. This “trustworthy” policy, i.e., if there is an 
update request, then there is a data change, 
characterizes all the DBMSs we are aware of.  This is 
indeed surprising, since the policy can often cost a lot. 
Tough times can leave thousands of salespersons with 
no sales, leading to useless transfers between clients 
and servers and to the useless processing on both nodes 
of thousands of records. Likewise, a security camera 
image is often a clip or movie of several Mbytes, 
leading to an equally futile effort. 

Furthermore, on the server side, several clients 
may attempt to read or update concurrently the same 
SDDS record R. It is best to let every client read any 
record without any wait. The subsequent updates 
should not however override each other. Our approach 
to this classical constraint is freely inspired by the 
optimistic option of the concurrency control of MS-
Access, which is not the traditional one in the database 
literature, e.g.  [LBK02].  

The signatures for SDDS updates are useful in this 
context as follows. The application that needs Rb for a 
normal update, requests from the client a search 
operation for key R and eventually receives the record 
Rb. When the application has finished its update 
calculation, the application returns to the client Rb and 
Ra. The client computes Sa and Sb. If Sa = Sb, then the 
update actually did not change the record. Such 
updates terminate at the client. The client sends Ra and 
Sb to the server only if Sa ≠ Sb. The server accesses R 
and computes its signature S. If Sb = S, then the server 
updates R to R := Ra. Otherwise, it abandons the update 

 



because of a conflict. A concurrent update must have 
happened to R in the time since the client read Rb and 
the server received its update Ra. If the new update 
proceeded, it would override the intervening one, 
violating serializability. The server notifies the client 
about the rollback, which in turn alerts the application. 
The application may read R again and redo the update. 

For a blind update, the application provides only 
Ra to the client. The client computes Sa and sends the 
key of Ra to the server requesting S. The server 
computes S and sends it to the client as Sb. From this 
point on, the client and the server can proceed as in a 
normal update. Calculating and sending S alone as Sb 
already avoids the transfer of Rb to the client. It may 
also avoid the useless transfer of Ra to the server. These 
can be substantial savings, e.g., for the surveillance 
images. 

The scheme does not need locks. In addition, as 
we have seen, the signature calculus saves useless 
record transfers.  Besides, neither the key search, nor 
the insert or deletion operations need the signature 
calculus. Hence, none of these operations incurs the 
concurrency management overhead. All together, the 
degree of concurrency can be high. The scheme 
roughly corresponds to the R-Committed isolation 
level of the SQL3 standard. Its properties make it 
attractive to many applications that do not need 
transaction management, especially, if searching is the 
dominant operation, as is the case in general for an 
optimistic scheme.  

The scheme does not store the signatures.  
Interestingly, the storage overhead can be zero. This is 
not possible for timestamps, probably the approach of 
MS Access, although that overhead is usually 
negligible, and hence perfectly acceptable in practice. 
In fact, it can still be advantageous to vary the 
signature scheme by storing the signature with the 
record. As we show later, the storage cost at the server 
is typically negligible, of only about 4B per signature. 
The client sends in this case also Sa to the server which 
stores it in the file with Ra if it accepts the update. 
When the client requests R it gets it with S. If the client 
requests S alone, the server simply extracts S from R, 
instead of dynamically calculating it. All together, one 
saves the Sb calculus at the client and that of S at the 
server. Also, and perhaps more significantly in 
practice, the signature calculus happens only at the 
client. Hence, it is entirely parallel among the 
concurrent clients. This can enhance the update 
throughput even further.  

Whether we store the signature or not, the main 
challenge remains the speed of the signature. Since a 
SDDS key search or a SDDS reaches currently speeds 
of 0.1 ms, the time to calculate record signatures 
cannot be longer than dozens of microseconds.  

Another challenge is the zero or practically zero 
probability of collisions to prevent update losses. 

  
2.3. Searches 

 
The frequent SDDS scan operation looks for all 
records that contain a string somewhere in a non-key 
field.  If the SDDS contains many server nodes, if the 
search string is long, and if there are few hits, then we 
can use the widely used distributed, Las Vegas pattern-
matching algorithm based on Karp-Rabin fingerprints 
[KR87], but with variations stemming from the use of 
our signatures.  In more detail, the client does not send 
on the search string, but rather its length and signature.  
The SDDS servers receive the signature and then 
calculate individually the signatures of all the 
substrings of the correct length in their collection of 
records.  They send back all records with such a string.  
While our signature differs from the ones that Karp and 
Rabin use, the difference is small enough so that they 
retain the property to evaluate quickly all substrings of 
a given length in a larger string.  The large number of 
substrings of a given length in an SDDS file virtually 
guarantees collisions, but these false positives are not 
dangerous since the client evaluates the strings 
returned by the servers.  

 
3. Galois Fields 

 
A Galois field (GF) is finite field. Addition and 

multiplication in a GF are associative, commutative, 
and distributive. There are neutral elements called zero 
and one for addition and multiplication respectively, 
and there exist inverse elements regarding addition and 
multiplication. We denote GF(2f) a GF over the set of 
all binary strings of a certain length f. We only use 
GF (28) and GF (216). Their elements are respectively 
one-byte and two-byte strings.  

We identify each binary string with a binary 
polynomial in one formal unknown x.  For example, 
we identify the string 101001 with the polynomial 
x5+x3+1.  We further associate with the GF the 
generator polynomial g(x). This is a polynomial of 
degree f that cannot be written as a product of two 
other polynomials other than the trivial products 1⋅f or 
f⋅1.  The addition of two elements in our GF is that of 
their binary polynomials.  This means that the sum of 
two strings is the XOR of the strings. When we use the 
“+” sign between two GF elements, it always refers to 
the exclusive or and never to an integer addition. The 
product of two elements is the binary polynomial 
obtained by multiplying the two operand polynomials 
and taking the remainder modulo g(x).   

 



4.  Algebraic Signatures  There are several ways to implement this calculus. 
We use logarithms, based on primitive elements of a 
GF, all of which we define below.  The order ord (α) 
of a non-zero element α of a Galois field is the 
smallest non-zero exponent i such that αi = 1.  All non-
zero elements in a GF have a finite order.  An element 
α ≠ 0 of a GF of size s is primitive, if ord(α) = s-1. It is 
well known that for any given primitive element α in a 
Galois field with s elements, all the non-zero elements 
in the field are different powers αi, each with a 
uniquely determined exponent i, 0 ≤ i ≤ s-1. All GF 
have primitive elements. In particular, any αi is also a 
primitive element if i and s-1 are coprime, i.e., without 
non-trivial factors in common.  Our GFs contain 2f 
elements, hence the prime decomposition of 2f-1 does 
not contain the prime 2. For our basic values of f = 8 
or16, 2f-1 has only few factors, hence there are 
relatively many primitive elements.  For example, for 
f=8 we count 127 primitive elements or roughly half 
the elements in the GF. 

 
4.1.  Basic properties 

 
We call page P a string of l symbols pi ; i = 0..l-1.  

In our case, the symbols pi are bytes or 2-byte words.  
The symbols are elements of a Galois field, GF (2f) (f = 
8, 16). We assume that l < 2f -1.  

We define logarithms with respect to a given 
primitive element α.  Every non-zero element β is a 
power of α.  If β = αi, we call i the logarithm of β with 
respect to α and write i = logα(β) and we call β the 
antilogarithm of i with respect to α and write 
β = antilogα(i). The logarithms are uniquely 
determined if we choose i to be 0 ≤ i ≤ 2f-2.  We set 
logα (0) = -∝ .     

We multiply two elements β and γ by the 
following formula which uses addition modulo 2f-1: 

antilog (log ( ) log ( )).α α αβ γ β⋅ = + γ

P

 

 Let α = (α1…αn) be a vector of different non-zero 
elements of the Galois field.  We call α the n-symbol 
signature base, or simply the base. The (n-symbol) P 
signature or, simply, P signature, based on α, is the 
vector 

1 2
sig ( ) (sig ( ),sig ( ),...,sig ( ))

n
P P Pα α α=α  

where for each α we set 
1

0
sig ( ) l i

ii
P pα α−

=
= ∑ . 

We call each coordinate of sigα the component 
signature. 

The n-symbol signature has some interesting 
properties that depend on the choice of the coordinates.  
We use primarily the following one where the 
coordinates are consecutive powers of the same 
primitive element α. 

α = (α, α2, α3…αn) with n << ord(a) = 2f - 1. 
In this case, we denote sigα as sigα,n.  Clearly, the 

collision probability of sigα,n can be at best 2-nf. If n 
= 1, this is probably insufficient. We also experimented 
with a different n-symbol signature sig’

α,n where all 
coordinates of α are primitive: 

α = (α, α2, α4, α8…α2n). 
To implement this formula, we create one table for 

logarithms of size 2f symbols. We also create another 
one for antilogarithms of size 2f⋅2. That table has two 
copies of the basic antilog table. It accommodates 
indices up to size 2f⋅2 and avoids the slower modulo 
calculus of the formula.   For our choices of f, both 
tables should fit into the cache of most current 
processors (not all for f = 16).  We also check for the 
special case of one of the operands being equal to 0.  
All together, we obtain the following simple C-pseudo-
code: 

Since α is primitive and since powers of 2 have no 
common factor with 2f-1, all coordinates of sig’α,n are 
primitive.  As we will see when we discuss cut-and-
paste operations, sig’α,n has different properties.  The 
basic new property of the sigα,n signature is that any 
change of up to n symbols within P changes the 
signature for sure. This is our primary rationale in this 
scheme. More formally, we stay this property as 
follows. 

   
Proposition 1: Provided the page length l is l < ord(α) 
= 2f –1, sigα,n signature discovers any change of up to n 
symbols per page. GFElement mult(GFElement left,GFElement 

right) {  
 if(left==0 || right==0) return 0; 

Proof:  As α is primitive and our GF is GF (2f) we 
have ord(α) = 2f – 1. Assume that the file symbols at 
locations i1, i2, … in has been changed, but that the 
signatures of the original and the altered file are the 
same.  Call dν the difference between the respective 
symbols in position iν.  The difference of the 
component signatures is then: 

 return 
antilog[log[left]+log[right]]; 
}  

In terms of Assembly language instructions, the 
typical execution costs of a multiplication are two 
comparisons, four additions (three for table-look-up), 
three memory fetches and the return statement.   
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The matrix is again of Vandermonde type, hence 
is invertible. This implies that every possible vector in 
GF(2f)n is the signature of a page with all but the first n 
symbols equal to zero, and of only one such page.  
Consider now an arbitrary vector s in GF(2f)n.  Each 
page of form (0,…,0,xn+1,xn+2,…, xl) has some vector t 
in GF(2f)n as its signature.  For any s, t  there is then 
exactly one page (x1,…,xn,0,…0) that has s-t  as the 
signature.  The page (x1,…,xn, xn+1, xn+2,…, xl) has 
therefore signature s.  Thus, the number of pages that 
have signature s is that of all pages of form 
(0,…,0,xn+1,xn+2,…, xl). There are  2f(l-n) such pages.  
There are furthermore 2fl pages in total. A random 
choice of two pages leads thus to the same signature s 
with probability 2f(l-n) / 2fl, which is 2-fn. Assuming the 
selections of all possible pages to be equally likely, our 
proposition follows.         qed 

The coefficients in the first row are all different, since 
the exponents iv < ord(α).  The matrix is of 
Vandermonde type, hence invertible.  The vector of 
differences  (d1,d2...dn)t  is thus the zero vector.  This 
contradicts our assumption. Thus sigα,n signature 
detects any up to n-symbol change.   qed 

 

 
Notice that Proposition 1 trivially holds for sig’

α,n 
with n ≤ 2.  More generally, it proves best possible 
behavior of sigα,n scheme for changes limited to n 
symbols. An application can however possibly change 
up to l > n symbols. We now prove that the sigα,n 
scheme still exhibits the low collision probability that 
we need in a signature scheme.  

 
Proposition 2: Assume page length l < ord(α) and that 
every possible page content is equally likely. Then the 
signatures sigα,n of two different pages collide 
(coincide) with probability of   2-nf. 

 
Proof: The n-symbol signature is a linear mapping 
between the vector spaces GF(2f)l and GF(2f)n.  This 
mapping is an epimorphism, i.e., every element in 
GF(2f)n is the signature of some page, an element of 
GF(2f)l.  Consider the map φ, which maps every page 
with all but the first n elements equal to zero to its 
signature.  Thus, φ: GF(2f)n → GF(2f)l, (x1,…,xn) → 
sigα,n ((x1,…,xn,0,…0)), and: 
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Notice that Proposition 2 also characterizes sig2
α,n 

for n ≤ 2. We called our scheme “algebraic” because it 
has interesting algebraic properties.  We now turn to 
state and prove the more important ones, starting with 
one that shows how our algebraic signature behaves 
when we change the page slightly.  In short, the 
signature of the changed page is the old signature 
changed by the signature of the change. Slight changes 
are common in databases, where a typical attribute 
consists only of a few symbols.  Proposition 3 below 
then allows us to calculate quickly the new signature of 
the record without having to scan in the complete 
record.  Another application, which we use in 
[XMLBLS03], checks whether a bunch of updates to a 
record actually took place.  We do this by calculating 
the signature of the record before the update.  We then 
calculate the signature of the record after the changes 
first based on Proposition 3 and then by rescanning the 
record.  If the two signatures coincide, then we trust 
that all updates have been performed correctly.  For 
example, we see the blocks in a RAID Level 5 scheme 
as records (of length 512B or a multiple of that value, 
depending on the file system.)  We maintain a log of 
all block changes.  A daemon removes old entries in 
the log when they are no longer needed for recovery.  
This daemon uses Proposition 3 to check that all 
updates in the log – whether about to be removed or 
not – have been performed.  This scheme amounts to a 
hybrid between a journaling file system and a classical 
system. 


 1, , ,r r sq q q

Proposition 3:  Let us change P = (p0, p1, … pl-1) to 
page P’ where we replace the symbols starting in 
position r and ending with position s-1 with the string 

+ − . We define ∆-string as ∆ = (δ0, δ1, …, 

  

 



δs-r-1) with δi = pr+i – qr+i .  Then for each α in our base 
α we have: 
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As the final property, we present the behavior of 

algebraic signatures when a cut-and-paste operation 
changes the page.  Proposition 1 states that the 
algebraic signature detects the change it if we move a 
string of length up to n/2.  This is of course very 
limiting.  Proposition 2 only gives an error probability.  
The base α = α0, α1, … αn-1, 0 ≤ i ≤ n-1, where every 
αi is primitive, has the largest possible ord (αi) for each 
αi. The sig’

α,n  scheme appears intuitively preferable in 
this context to sigα,n  and the following proposition 
confirms the conjecture formally. 
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Figure 2. We only treat the case of length(B) ≥ n, the 
other one is analogue.  Without loss of generality, we 
assume a forward move of T within the file from 
position r to position s.  A backward move just undoes 
this operation and thus has the same effect on the 
signature.  Figure 2 defines names for the regions of 
the block and makes a spurious case distinction 
depending on whether r+t < s or not.  For any α ∈{α0, 
α1…αn-1}, the α signature of the “before” page (the top 
scheme for both situations) is 
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The difference of the two signatures is: 
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Since our addition is the bitwise XOR, the negative is 
the same as the positive and no negative sign is 
missing in this expression.  The expression is zero only 
if the right hand side, or the following expression, 
where we use γi as an abbreviation, is zero: 
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 We now fix the whole situation with the exception of 
the first n symbols in B.  The change in signature is:          
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The left hand side is a linear mapping in the (b0, b1, … 
bn-1), which has a matrix that is invertible, because it 
has a Vandermonde type determinant.  Therefore, there 
exists only one combination (b0, b1, …, bn-1) that is 
mapped by the mapping onto the right hand vector.  
This combination will be attained for a randomly 
picked B with probability 2-nf.          qed 

 



To obtain the strongest property of a sigα,n 
signature schema, one should thus use α whose αi have 
the largest order. The natural choice are primitive αi. 
Assuming the need for n > 2, this is precisely the 
rationale in sig2

α,n. Notice that for GF (216), the 
collision probability is already small enough in 
practice, we discuss this in detail in Section 5.2.  

 At this stage of our research, the choice of sig’
α,n 

appears only as a trade-off between smaller probability 
of collision for possibly frequent updates (switches 
here), and the zero probability of collision for updates 
up to any n symbols. We are able only to conjecture 
that there is α in GF(28) or GF(28) for which 
Proposition 1 and 2 holds for sig’

α,n with n > 2.  We did 
not pursue the investigation further. For our needs, n 
= 2 for GF (216) was sufficient (Section 5.2). As 
sig’

α,2 = sigα,2, the properties of both schemes coincide 
anyway. 

 
4.2.   Compound Algebraic Signatures 

 
Our signature schemes keep the property of sure 

detection of n-symbol change as long as the page size 
in symbols is at most 2f – 2. For f = 16, the limit on the 
page size is almost 128 KB. Such granularity suffices 
for our purpose. There might be many pages in an 
SDDS bucket that can reach easily 256 MB for SDDS-
2000. We can view the collection of all the signatures 
in a bucket as a vector. We call this vector the 
compound signature (of the bucket). More generally, 
we qualify a compound signature of m pages, as m-
fold. The signature map of Section 2.1 implements a 
compound signature.   

The practical interest of the compound signatures 
stretches beyond our motivating cases. Assume that we 
have a large string A.  Proposition 1 guarantees only 
that we find small changes through our signature if A 
does not contain more than 2f-1 characters.  To apply 
Proposition 1 nevertheless, we break A into m pages of 
length smaller than ord(α)–1, α ∈ α.  The resulting m-
fold compound signature then allows us to find any 
change involving up to n characters in any of the pages 
for sure.   

If we have many pages (m>>1), we can use the 
following Proposition 5 to speed up the comparison of 
compound signatures by calculating the signature of a 
group of contiguous pages. We can do the same to a 
number of these “super-signatures” to obtain higher-
level signatures.  We can then organize these higher 
signatures in a tree structure.  We always calculate 
algebraically the higher-level signature in a parent 
node from all the lower-level signatures in the children 
nodes. If a signature of a page changes, then all 
signatures on a path from a leaf to the node change 

(Fig. 3). This capability of compound signatures can be 
of obvious interest to our SDDS file backup 
application. 

 

 
 
Figure 3: Signature tree with 3 levels of 
signatures. 

 
 
The following proposition states the algebraic 

properties for only two pages of possibly different 
sizes.  It can be easily generalized to more pages. 

   
Proposition 5: Consider that we concatenate two pages 
P1 and P2 of length l and m, l + m ≤  2f-1, into page 
(area) denoted P1P2. Then, the signature sigα,n 
(P1P2) is as follows, where sig denotes sigα,n : 

sigα,n (P1P2) =   
(sig(P1)+al⋅ sig(P2), sig(P1)+a2l⋅ sig(P2),…, 

 sig(P1)+anl⋅ sig(P2). 
 

Proof: The proof consists in applying the following 
lemma to each coordinate α of α.    
 qed 

 
Lemma. We note sigα,1 as sigα. Then, the 1-symbol 
sigα (P1P2) signature is 

sigα (P1|P2) = sigα(P1)+al sigα (P2). 
 

Proof: Assume that P1 = {s1,s2,…,sl} and P2 = {sl+1, 
sl+2, …, sl+m}.  Then 
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Proposition 5 holds analogously for sig2
α,n. 

Together, all the propositions we have formulated 

 



prove the potential of our two schemes.  We are 
currently investigating further algebraic properties. 

 
4.3.   Reinterpretation of Symbols 

 
The following meta-proposition turns out to be 

important when we tune the speed of the signature 
calculation. 

 
Proposition 6: Let ϕ be a function that maps the space 
of all symbols into itself and is one-to-one.  (With 
other words, ϕ is a bijection of GF(2f). ) Define the 
twisted signature 

1
, 0
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ii
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and similarly 
1 2, , , ,sig ( ) (sig ( ),sig ( ),...,sig ( ))

n
P P Pφ ϕ α ϕ α ϕ α=α P  

Then Propositions 1 to 5 also apply mutatis mutandis 
to the twisted signatures. 

 
The proof is simply by inspection. 
 

5.  Experimental Implementation  
 

5.1.    Speeding up Galois Field arithmetic 
 
We can tune the signature calculation.  First, 

according to Proposition 6, we can interpret the page 
symbols directly as logarithms.  This saves a table 
look-up. The logarithms range from 0 to 2f-2 
(inclusively) with an additional value for log(0).  We 
set this one to 2f-1.  Next, the signature calculations 
forms a product with αi, which has i as the logarithm. 
Thus, we do not need to look up this value.  The 
following pseudo-code for sigα,1 applies these 
properties.  It uses as parameters the address of an 
array representing the bucket and the size of the 
bucket. The constant TWO_TO_THE_F is 2f.  The 
type GFElement is an alias for the appropriate integer 
or character type.  The application to the calculation of 
sigα,n is easy. 

GFElement signature( GFElement *page, int 
pageLength) { 
 GFElement returnValue = 0; 
 for(int i=0; i< pageLength; i++) { 
  if(page[i]!=TWO_TO_THE_F-1)  
    returnValue ^= antilog[i+page[i]]; 
  } 
  return returnValue; 
} 

In our file backup application, the bucket usually 
contains several pages so that we typically calculate 
the compound signature. To tune the calculus, one 

should consider the best use of the processor caches, 
i.e., L1 and L2 caches on our Pentium machines.  To 
increase locality of memory accesses, we first loop on 
the calculation of sigα,1 for all the pages, then move to 

and so on. Our experiments confirmed that this 

is better. 
2 ,

sig
nα

 
5.2.   Experimental Performance 

 
We analyzed the performance of the signature 

scheme based on sigα,1. Our test bed consisted of 1.8 
GHz Pentium P4 nodes and from 700 Mhz Pentium P3 
nodes over a 100 Mbs Ethernet.  We used simulated 
data and varied the way we calculate the signature.   
We did the same for sig’

α,n. Not surprisingly, both 
schemes needed about the same calculation times.   

We tested our implementation of the signature 
calculus with simulated data.  We varied the details of 
the sigα,n and the sig’

α,n calculus implementation and 
experimented with various ways of compounding.  As 
was to be expected, the calculation times of sigα,n and 
the sig’

α,n where the same. Finally, we have ported the 
fastest algorithm of sigα,n calculus to SDDS-2000.  

Our sample SDDS had records of about 100 B and 
a 4B key.  For both n-symbol signature schemes, we 
divided the bucket into pages of 16KB and with a 4B 
signature per page.  We selected this page size as a 
compromise between the signature size (and hence its 
calculation time) and the overall collision probability 
of order 2-32, i.e. better than 1 in 4*109.  At one back-
up operation a second, we can expect a collision every 
135 years.   

Internally, the bucket in SDDS-2000 has a RAM 
index because it is structured into a RAM B-tree. The 
index is small, a few KB at largest. To break up the 
index into pages of the same size as for bucket pages 
does not make sense there. We picked a page size of 
128 B for the index.  

For record updates, we use the scheme where we 
calculate signatures on the fly only.  Alternatively, we 
could have stored a signature with each record.  Recall 
that the signature calculation is only done for updates 
and not for inserts. 

We present the experiments and their analysis in 
full in [LMS03], but summarize the main results here: 

When we calculated signatures not in the context 
of SDDS, then the calculation time depended to a large 
degree on the type of data used.  The longest 
calculation was for strings that consisted of completely 
random characters in the full range of ASCII and the 
shortest for highly structured data such as a spelled out 
number repeated several times.  We attribute this 
behavior to the influence of the various caches.     

 



For a given page size, the calculation times for 
sigα,n were linear in n. The actual calculation times of 
the 4B long signature sigα,2 (calculated in GF(216), see 
below) as finally integrated into SDDS-2000 was 20-
30 ms per 1 MB of RAM bucket, manipulated as a 
mapped file. For SHA-1, our tests showed about 50-60 
ms. As was desired, it took in the order of dozens of 
microseconds to calculate sigα,2 for an index page or 
for a record.  The time grew linear with the bucket or 
record size, and – somewhat surprisingly – turned out 
to be independent of the algebraic signature scheme 
tested.  Probably due to a better use of the cache, 
calculating the signature of a 64KB page is relatively 
faster than the one of a 16KB page.  We contrast these 
times with the actual transfer time of 1 MB from RAM 
to disk, which is about 300 msec. 

Bytes are the smallest usable chunks in a modern 
computer because of the need to process text 
efficiently.  For this reason, we should choose a Galois 
field whose elements are bytes or multiple of bytes.  
Since the logarithm and antilogarithm tables of a 
Galois field GF(2f) have sizes in the order of 2f, we 
really only have the choice between GF(216) and 
GF(28).  Using the first taxes the cache more because 
of the larger size of these tables, but the number of 
Galois field operations is half of that when we make 
the latter choice.  Our experiments showed that the 
calculation of signatures using GF(216) turned out to be 
slightly faster.  This justified our final choice to use 
sigα,2 based on GF(216) in SDDS-2000.  

We have experimented with using signatures to 
distinguish between updates that change and those that 
in fact do not change a datum (a pseudo-update).  The 
experimental results are detailed in [H03] and show the 
expected savings for pseudo-updates (e.g. an almost 
four-fold gain of pseudo-updates over actual updates 
for updates of 1KB and a double speed for updates of 
100B).    

We also ran experiments on a modified SDDS-
2000 implementation that uses signatures to distinguish 
between updates that in fact change the record and 
those that do not.  The latter is a “pseudo-update”.  We 
did this for blind updates, which – as we recall change 
the value of the record absolutely – and for normal 
updates, which set the new value of the record based 
on the old value.  (See Section 2.2 for the scheme.)  
The complete results of the experiments are in [H03].  
In overview, their results confirm that signature 
calculation and record update is fast and that savings 
for pseudo-updates are substantial. 

In detail, we measured the time to calculate a 
signature to be under 5 µsec / KB of data on a 1.8 GHz 
Pentium 4 machine.  A 700MHz Pentium 3 was 
surprisingly about thirty times slower yielding a rate of 
158 µsec / KB.  This again shows the sensitivity of the 

signature scheme to caching.  A normal update on the 
P4-workstation took 0.614 msec per 1KB record, but a 
normal pseudo-update took only 0.043 msec per 1KB 
record.  The savings amounts to about 90% of the 
normal update time.  The numbers do not include the 
time it takes to access the record over the net, which is 
0.237 msec.  If we add this time, then the savings for 
normal pseudo-updates is only 70%.  As expected, 
processing times for blind updates are faster, namely 
0.8372 msec and 0.2707 msec for a true and for a blind 
pseudo-update, respectively.  The times include the key 
search, the update processing, and the transfer of the 
record signature.  The savings for pseudo-updates are 
again about 70%. 

When we experimented with 100B records, the 
times were naturally faster.  For normal updates we 
measured 0.419 msec (true update) and 0.03 msec 
(pseudo-update). Including a search time of 0.22 msec 
the numbers become 0.63 msec and 0.25 msec, 
respectively.  The total times for blind updates were 
0,51 msec and 0,24 msec.  The savings were now about 
50%.  [H03] gives the numbers for the P3 machines. 

Finally, we tested our signature scheme for the 
search in the non-key portion of a record, as laid out in 
Section 2.3.  Since we use GF(216), that is, since we 
use symbols of length 2B, and since our records 
consists of 1B ASCII characters, our code has to take 
care of an alignment problem, that arises when e.g. the 
second, third, and fourth byte of a record make up the 
string for which we are searching.  The searches 
stretched over all 8000 records with a 60B non-key 
field.  We manipulated the bucket so that the third-last 
record contained the 3B string for which we were 
searching.   The total search time was 1.516 sec, but 
traversing the bucket already took 0.5 sec.  Without 
this time, we search at a speed of 2 sec per MB.  We 
compared this time with a Karp Rabin type search 
where instead of our signature we use the byte-wise 
XOR.  This took 1.504 sec (instead of 1.516 sec).  
Thus, most of the calculation time is spend on memory 
transfers and very little on Galois field arithmetic. 

 
6.   Conclusion and Future Work 

 
Our signature scheme has the new (to our 

knowledge) property of guaranteed detection of small 
changes and also allows algebraic operations over the 
signatures themselves.  (Cohen [C97] describes general 
extension of Karp-Rabin fingerprinting to obtain 
similar algebraic properties for use in searching. These 
properties are also used in finding similarities amongst 
files, e.g. [ABFLS00].  Together with the high 
probability of detection of any change, including cut-
and-paste operations, small overhead, and fast 
signature calculation, our approach proved to be useful 

 



for the SDDS bucket backups and SDDS record 
updates that motivated our investigation. Our 
experiments allowed us to successfully add the sigα,n 
scheme to SDDS-2000 system.  

 
6.1.   Signature Properties and Implementation 

 
In the future, we should determine additional 

algebraic properties of the scheme.  We know that 
sig2

α,n for some α does not have the property of 
Proposition 1, i.e. that it detects small changes with 
certainty, but whether this is true for all α remains an 
open question.  In greater generality, is it possible to 
find a base α consisting of primitive elements that 
satisfies Proposition 1?  It appears that an answer 
depends on deep properties of finite fields. 

We are currently exploring methods to increase 
the speed of the signature calculation.  In a nutshell, 
the current multiplication operation evaluates an anti-
logarithm for every symbol in the page.  By using a 
technique adapted from Broder [B93], we can 
implement an alternate way to calculate signatures.  
Preliminary results suggest that it is two to three times 
faster than the method reported here. 

We did not explore the Prefetch macro that allows 
us to save additional calculation time by preloading the 
L1 and L2 caches in an Intel x86 architecture.   

The use of signature trees for computing the 
compound signatures and explore the signature maps is 
an open research area. 
 
6.2.   Additional Applications 

 
In the context of SDDS, we can apply our scheme 

to the automatic eviction of SDDS files when several 
files share an SDDS server whose RAM became 
insufficient for all the files simultaneously, [LSS02]. 
Our signature scheme appears to be a useful tool to 
manage the cache at the SDDS client and to keep the 
cache and server data synchronized.    

There is also an interesting relationship between 
the algebraic signatures and the Reed-Salomon parity 
calculus we use for the high-availability SDDS LH*RS 
scheme, [LS00]. In this scheme, we use GF 
calculations to generate the parity symbols of a Reed 
Solomon code ECC (error-control-code).  LH*RS 
combines a small number m of servers into a reliability 
group and adds k parity servers to the ensemble.  The 
parity servers store parity records whose non-key data 
consists of parity symbols.  We can reconstruct 
contents of lost servers as long as we can access the 
data in m out of the m+k total servers in a reliability 
group.  LH*RS needs to guarantee consistency between 
parity and data servers, i.e., parity and data servers 

need to have seen the same updates to records.  We 
have shown the existence of an algebraic relation 
between the signatures of data and parity records 
which can be used to confirm this consistency between 
parity and data buckets. The importance of maintaining 
consistency between parity records and client data 
records is not unique to SDDS.  In a RAID Level 5 
disk array, the same problem exists between the parity 
blocks and the client data blocks.  [XMLBLS03] 
proposes the same scheme in the context of a very 
large disk farm that uses mirroring and / or parity 
calculus to secure data against disk failure. 

Our techniques should also help other database 
needs. Especially, they should prove beneficial for a 
RAM-based database system that typically needs to 
image the data in RAM to disk as well. RAM sizes 
have reached GB size and operating system and 
hardware support is becoming available for even larger 
RAM.  This should add to the attraction of RAM-based 
database system at the costs of traditional disk-based 
database systems, [NDLR01].   

Our signature-based scheme for updating records 
at the SDDS client should prove its advantages in 
client-server based database systems in general. It 
holds the promise of interesting possibilities for 
transactional concurrency control, beyond the mere 
avoidance of lost updates. 
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