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Abstract 

With increased network speeds and throughputs, 
multicomputers (a system of computers connected by a 
high-speed network) have become an attractive 
alternative to store important data in their collective 
random access memory.  Erasure codes provide space-
optimal data redundancy to protect this type of storage 
from node unavailability.  They have been used in 
LH*RS, the scalable high availability, distributed 
version of Linear Hashing. We present and evaluate a 
technique that uses the property of linear erasure 
correcting codes to make updates transactional and 
concurrent with recovery from one or more node 
availabilities without locks or two-phase commits. The 
technique significantly improves on previous work in 
update speed and also allows for serializable updates 
to a bucket that is in the process of being recovered.  

1. Introduction 

As network speeds increase, multicomputers 
(systems of computers connected by a high-speed 
network) offer unbeatable price/performance ratios.  In 
particular, we can use their collective RAM to store 
large amounts of data.  Distributed RAM is about 60 – 
70 times faster to access than disk drives (i.e. has 
access times around 100 msec) and can grow 
practically unlimited by adding nodes.  Unfortunately, 
a large system is likely to suffer from unavailable 
nodes, so that we need to store data redundantly.  The 
relative high cost of distributed RAM favors the much 
more space-efficient erasure correcting codes to 
generate this redundancy.  Systems such as LH*RS
[MLS04, LMS05] and HADRAM [CS04, CSS06] 
implement distributed RAM. The former is a Scalable 
Distributed Data Structure (SDDS) [SDDS] with 
scalable high availability; the latter provides a layer for 
implementing scalable high availability for any SDDS.   

We present in this paper a general mechanism for 
fast updates and fast reconstruction to recover from 
node unavailability. We make progress over LH*RS 

[LMS05] by providing much faster small updates.  We 
achieve this by using the fact that parity information 
only needs to cohere when it is used for reconstruction, 
though of course incoherence between any 
combination of data and parity data prevents successful 
recovery.  Consequentially, we use lazy 
acknowledgments of parity updates during normal 
operations. We log updates and only purge the log 
when the update has percolated to all parity sites. 
Basically, we are looking for the “low watermark”, 
therefore the name of our scheme. Before a 
reconstruction, we use the logs in order to bring all 
data and parity sites to the same state.  

2. Related Work 

Using erasure codes for redundancy is a standard 
method in disk based storage.  RAID Level 5 [C+94]
uses the m+1 simple parity code and RAID Level 6 a 
number of two-erasures correcting codes. Stonebraker 
[SS90] realized the benefits of physically separating 
the data in a reliability group.  For larger, disk-based 
storage systems, erasure coding is also used. For 
example, Xin et al. [XMS04] show the importance of 
fast recovery for data availability in a very large 
storage system. Aguilera et al. [AJX05] propose a 
family of algorithms that allows concurrent updates 
and recovery operation. Basically, in their scheme, 
recovery falls to a client. Once a block has failed, a 
new block is created in its stead, with invalid data. A 
client that recovers that block locks it and then 
proceeds as normal. To insure that the other m blocks 
used for recovering are consistent, a list of past writes 
is kept and periodically garbage collected.  Our scheme 
uses a similar list, but reconstruction is done at the 
server, consistent with the SDDS.  Goodson et al. 
[G+04] use erasure-coding to store a single object 
redundantly over a number of sites, just as in IDA 
[Ra89]. While they are also concerned about good 
performance, their main contribution is using 
cryptographic hashes, a type of versioning and 
quorums to deal with Byzantine failures.  Frølund et al. 
[F+04] investigate erasure coding for Federated Arrays 
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of Bricks (FAB).  They use a quorum protocol to 
achieve strict linearizability, something we do not do, 
though their method could easily be implemented in 
our setting. Using erasure coding becomes popular in 
other areas, such as grid-computing.  Pitkanen et al. 
[P+06] report on an implementation of erasure-code 
protected storage for the grid. Similarly, Kubiatowicz 
et al. [K+00] propose erasure-coding for OceanStore.
Myriad [C+02] realizes higher availability in a large 
disk-based system similar to us by using RS-coding 
and reliability groups.  The paper shows that the 
hardware savings of erasure coding lower in effect the 
total cost of ownership. Myriad uses 2PC to keep 
updates consistent. Gallersdorfer and Nicola [GN95] 
improve performance in a replicated database by 
relaxing coherency constraints, a method that is not 
directly applicable to our problem. 

Our basic design looks very similar to distributed, 
shared memory [Esk].  However, distributed shared 
memory operates at the operating system level whereas 
we describe an application designed to run over any 
operating system.  In addition, distributed shared 
memory enables generic workloads, whereas our work 
is more interested in database applications. 

3. Overview of Erasure Coding 

For ease of reading, we briefly review linear erasure 
coding. A m/n systematic, linear, maximum distance 
separable erasure code [MS78] takes m data blocks and 
adds to them k parity blocks for a total of n = m+k
blocks such that all contents can be reconstructed from 
only m of the n blocks. To calculate the contents of the 
parity (a.k.a. redundant) blocks, we calculate with 
symbols – bit strings of length f with f = 8 or f = 16 
being the more popular choices.  The set of all possible 
symbols form a Galois field GF(2f). Its arithmetic 
follows the same rules as for the better known fields 
made up by the real or complex numbers. Indeed, it 
happens that addition and subtraction are both the bit-
wise exclusive-or (XOR) operation.  Assume that X1,
X2, … , Xm are the contents of the data blocks written 
as equal-length column vectors with symbols as 
coordinates.  The contents Xm+1, Xm+2, … , Xn of the 
parity blocks are then calculated as  

(X1, X2, … Xm, Xm+1, Xm+2, … Xn) = (X1, X2, … Xm)⋅G
with a generator matrix G = (gij) with coefficients gij in 
GF(2f) and the properties that the first m rows of G
form an identity matrix and that any m by m submatrix 
formed by selecting any m rows from G is invertible.  
If we have m data or parity blocks, let’s relabel them 
(Y1, Y2 …Ym), and if we create a submatrix H of G
from the corresponding rows, then  

(Y1, Y2 … Ym) = (X1, X2 … Xm)⋅H

and since H is invertible, we can recover the data 
buckets as (X1, X2 … Xm) = (Y1, Y2… Ym) ⋅H-1 and then 
recalculate the parity blocks.  Calculating the parity 
buckets later makes sense in our context since we need 
to satisfy read requests in parallel with recovery.  
Otherwise, we can recover data and parity blocks 
simultaneously as  

(X1, X2… Xm, Xm+1, Xm+2… Xn)⋅H-1⋅G.
For recovery, we need to access the blocks, multiply 
them coordinate-wise with an element of the recovery 
matrix H-1 and then XOR the products together.   

In our setting, we update a single data block at a 
time.  Let that be block Xi that is changed to X’i.  Write 
Δ = X’i -Xi.  A simple calculation then shows that 
parity block Xj changes to X’j = Xj + gijΔi. Thus, to 
update, we create the delta-value as the (XOR-) 
difference between the old and the new data value and 
send it to all sites storing parity blocks.  There, we 
multiply the Δ block with a coefficient of G and add 
the result to the current parity block.  Obviously, but 
quite important for us, parity updates commute.  We 
only need parity blocks when we reconstruct data 
blocks, but then data and parity data needs to be 
consistent for a successful recovery. 

4. LH*RS and HADRAM 

LH* [LNS96], the distributed version of linear 
hashing, stores records consisting of key and a non-key 
field in buckets based on a hash of the key.  The 
number of buckets and hence the hash function 
changes with the number of buckets, but clients do not 
have direct access to this number in order to avoid the 
bottleneck of a centralized addressing scheme.  Clients 
might make an addressing mistake (because their view 
of the file state is not the accurate one) but they are 
guaranteed not to make the same mistake twice and 
they are guaranteed that their requests reach the 
intended bucket typically in a single hop, sometimes a 
double hop, and only rarely a triple hop.  LH* thus 
offers access times to the records that are independent 
of the file size.  However, as the number of buckets 
and hence the number of servers employed increases, 
an LH* file becomes more likely to suffer from node 
unavailability.  For this reason, LH*RS places the LH* 
buckets (now called the data buckets) into Reliability 
Groups (RG) of size m and adds to each reliability 
group k= n − m parity buckets.  The parity buckets 
contain parity records.  A record in a bucket in an RG 
belongs to a record group made up of at most one 
record in each bucket.  The records in the parity 
buckets belong to one record group and have an 
enumerator (the rank) as the key, a list of the keys of 
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the data records as a second field, and a parity field 
calculated from a linear m/n erasure correcting code of 
all the non-key fields in the data buckets in the record 
group.  When a data bucket fails, LH*RS first finds m
available buckets in the RG.  It then recovers each data 
record from the m available records in the record 
group.  The key comes from the list of key of any 
parity record, whereas the non-key field is recovered 
with the m/n code.  LH*RS reconstructs individual 
records for a waiting client before reconstructing a lost 
data bucket.  LH*RS also increases n when the file 
becomes larger, thus guaranteeing constant minimum 
availability of the complete file. Details of LH*RS are 
in [LMS05]. 

Highly Available Distributed Random Access 
Memory (HADRAM) [CSS06] provides scalable high-
availability to any SDDS. It stores user data in blocks 
(of size several MBs at least) in the distributed RAM 
of the multicomputer and just as LH*RS groups several 
of these data HADRAM blocks (H-blocks) into 
reliability groups and then adds parity blocks to the 
reliability group.  All blocks in a RG are stored on 
different nodes of the multicomputer. In difference to 
LH*RS, an H-block is flat, unstructured memory. 

LH*RS as an SDDS stores data in the manner of a 
relational database table, but typically with simple 
transactions.  We can therefore expect the writes 
(inserts, updates) to be that of a single record.   The 
only exception arises from a bucket split that moves 
about half of the data in a bucket to a new bucket.  We 
are not concerned with the split operation in this paper, 
but assume that all writes are small.  Our method still 
handles very large writes, but performance would 
suffer.  HADRAM as a layer under an SDDS inherits 
the same performance characteristics. 

Figure 1: Update of a HADRAM block. 

Updates in both structures follow the pattern set by 
the “Small Writes” in RAID Level 5.  To be more 
precise, a client sends an update to a data site. In the 
case of LH*RS, the update is to a record, in the case of 
HADRAM, the update specifies an offset in the block 
and a replacement string.  In either case, the data site 

generates a Δ-record, that consists of the XOR between 
the new and the old value and metadata such as the 
record key for LH*RS and the block number and offset 
for HADRAM.  The data site sends the Δ-record to all 
parity sites.  These calculate the new parity data by 
multiplying the Δ-record with a certain Galois field 
element (defined by the linear erasure correcting code 
used) and then XOR it to the old parity data. Figure 1 
gives an example for an update in HADRAM.  

Update operations at a parity bucket commute.  In 
order to use the parity data for data reconstruction, we 
need to have applied every update exactly once, but it 
does not matter in what order.  In addition, we can 
delay parity data update until we need the parity data 
for reconstruction. 

Example 
Assume that we have HADRAM blocks organized 

in a reliability group with two data blocks and two 
parity blocks.  For the encoding, we choose the same 
code as in [LMS05].  Figure 1 presents the initial 
contents in hexadecimal notation before and after an 
update. It happens that the contents in the first parity 
block is the XOR of the two data blocks, however, the 
calculation of the second parity block is more involved 
and involves Galois field multiplication.  The first data 
block contains the string “Santa Clara, CA” whereas 
the second one the string “Tulsa, OK”.  An update now 
arrives at data site 2, requesting contra-factually to 
change the state of Tulsa to Texas.  Data site 2 
calculates the XOR of the old and new value and 
creates the Δ-record in a compressed version.  It then 
sends the Δ-record to the parity sites, which use it to 
update their content.  The first parity site simply XOR 
the difference to the substring specified by offset and 
length, whereas the second parity site has first to 
multiply each byte in the string “1b 2e 78 61 73” with 
a certain Galois field element determined by the code 
and the issuing data site and then XOR the result to its 
content starting at the offset. 

5. Transaction Processing Messaging  

A data update (i.e. a record insert, delete, and 
modification in LH*RS; in HADRAM every 
modification of a block is an update) needs to be 
performed at the data bucket and at all the parity 
buckets for sure.  A simple scheme is the well known 
One-Phase-Commit (1PC) [S79, BG83, CS84…], in 
which the parity site acknowledges all update requests 
from the data site and perform them immediately. After 
receiving all acks from the parity site, the data site can 
commit the update and ack to the client.  This simple 

D1: 53 61 6e 74 61 20 43 6c 61 72 61 2c 20 43 41 00 
D2: 54 75 6c 73 61 2c  20 4f 4b 00 00 00 00 00 00 00 
P1:  07 14 02 07 00 0c 63 23 2a 72 61 2c 20 43 41 00 
P2:  48 07 7f  4e d2 ff  24 34 51 72 61 2c 20 43 41 00 

D1: 53 61 6e 74 61 20 43 6c 61 72 61 2c 20 43 41 00 
D2: 54 75 6c 73 61 2c 20 54 65 78 61 73 00 00 00 00 
P1:  07 14 02 07 00 0c 63 38 04 0a 00 5f 20 43 41 00 
P2:  48 07 7f 4e d2 ff 24 77 ba b6 d2 16 20 43 41 00 

Update: Change block 2, pos. 8 – 12 to 54 65 78 61 73. 
Δ-record is (Data2, offset 8, length 5, “1b 2e 78 61 
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scheme is not sufficient for two or more parity sites in 
an RG as the following example shows.  Assume that a 
data site sends a Δ-record to two parity sites, but fails 
during the send so that only one parity site receives the 
Δ-record.  There is no information left in the system to 
decide which parity site has the correct value.  Using 
both to recover the data site contents yields neither the 
new nor the old value, but gibberish. Logging all 
updates at parity sites (alone) does not help since there 
is no way to discard old update entries.  The LH*RS
prototype [LMS05] used 1PC because it assumed a 
completely reliable network.  

An alternative is a variant of Two Phase Commit 
(2PC), in which the data site sends the delta record to 
all parity sites in a fixed order.  The parity sites place 
the Δ-record in a queue of all such requests and send an 
acknowledgement to the data site.  The data site waits 
for all n−m acks from the parity sites to arrive and then 
sends out a “commit” message to all the parity sites in 
the same order.  The order in this serial 2PC protocol 
allows parity sites with competing views of the state of 
a lost data site (for example, whether the data site is in 
phase 1 or has already moved to phase 2) to reconstruct 
the data site state up to messages sent to also failed 
parity sites.  Its obvious drawback is the much longer 
time it takes to acknowledge to a client that the update 
has been performed for sure, that is, without the 
possibility that a subsequent data site failure and 
reconstruction recreates the contents before the update.  
This is the only protocol in [LMS05] that achieves 
transactional behavior of updates in the presence of 
failures. 

Parallel 2PC (in which the data site sends out phase 
1 and phase 2 messages to the parity buckets as a 
multicast) in contrast is much faster.  However, if a 
data site fails in the middle of an update and if 
messages are lost, then we cannot always successfully 
restore parity sites to coherence.  For an example, 
consider the following two scenarios: First, assume 
that the updating data site fails in phase 1, but that only 
parity site 1 has received the Δ-record.  Second, 
assume that the updating data site fails in phase 2 and 
that only parity site 2 has received the “commit” 
message.  There is not enough information at surviving 
parity sites 1 and 2 to decide between these scenarios.   
The final protocol investigated (and the best according 
to our experimental evaluation) uses logging; we call it 
low-watermarking because participants exchange 
information about which site has received an update 
and incorporated it for sure in order to garbage-collect 
the log.  When a failure is detected, all surviving sites 
exchange logs to bring each other to the same state.  
Acknowledgments in this protocol pose an interesting 
problem.  If the data site acknowledges after sending 

out the Δ-records to all k parity sites, the update is k-
available in the sense that it is retained if no more than 
a total of k messages and sites in the RG become 
unavailable.  If it acknowledges after receiving the 
(delayed) acknowledgment of the parity sites, then the 
update is k-available in the sense that the data with the 
update survives up to k site unavailabilities in the RG.  

In more detail, low-watermarking numbers each 
update arriving at a data site consecutively.  By 
appending this number to the unique identifier of the 
data site, all updates receive a unique label.  (In LH*RS,
clients might send an update request to another site, but 
the scheme forwards the update request to the correct 
data site in at most two additional hops.  The correct 
LH* bucket always knows that it is the correct one 
handling this update and only it will talk to the parity 
buckets. Similarly for migrating buckets due to 
reconstruction of unavailable buckets.)   

Figure 2: Update example 

Using watermarking, sites never explicitly 
acknowledge messages.  Rather, they implicitly use 
bulk acknowledgments by maintaining and exchanging 
a state that encodes the messages that were received. 

  The state of data site Di contains the last update 
number ui that it has seen.  For each parity site Pj, it 
also contains the number of updates ui(Pj) that are 
directed to Di and for which Di knows that the parity 
site Pj has received the corresponding Δ-update. The 
data state is hence made up of k + 1 numbers, where k
is the number of parity sites in the RG. 

P1:(0,0,0)|(0,0,0) (a) P2:(0,0,0)|(0,0,0)D2:(0,0,0)D1:(0,0,0)

P1:(3,3,0)|(0,0,0) (b) P2:(3,0,1)|(0,0,0)D2:(0,0,0)D1:(3,0,0) 
D1,1

D1,2

D1,3

P1:(3,3,0)|(0,0,0) 
Δ1,1 

Δ1,2 

Δ1,3 

(c) P2:(3,0,3)|(0,0,0) 
Δ1,1 

-
Δ1,3 

D2:(0,0,0)D1:(3,0,1) 
D1,1

D1,2

D1,3

P1:(3,3,0)|(0,0,0) 
Δ1,1 

Δ1,2 

Δ1,3 

(d) P2:(3,0,3)|(0,0,0) 
Δ1,1 

Δ1,2 

Δ1,3 

D2:(0,0,0)D1:(3,0,0) 
D1,2

D1,2

D1,3

P1:(3,3,0)|(0,0,0) 
Δ1,1 

Δ1,2 

Δ1,3 

(e) P2:(3,0,3)|(0,0,0) 
Δ1,1 

Δ1,2 

Δ1,3 

D2:(0,0,0)D1:(3,3,1) 
D1,2

D1,3

P1:(3,3,0)|(0,0,0) 
Δ1,2 

Δ1,3

Δ1,4 

(f) P2:(4,3,4)|(0,0,0) 
Δ1,4 

D2:(0,0,0)D1:(4,3,1) 
D1,2

D1,3 

D1,4 
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The state of a parity site Pj consists of n
components, one each for each data site.  Each state 
component contains the state of the data site as the 
parity site knows about it.  

States are updated whenever an update, either from 
a client in the case of a data site or a Δ-record from a 
data site in the case of a parity site, arrives.  They are 
also updated when sites exchange states.  In more 
detail, assume that a client update arrives at a data site.  
In this case, the data site increments its count ui. If a Δ-
record arrives from data site Di at parity site Pj, then 
only the component corresponding to Di in Pj’s state 
changes. If the Δ-record has sequence number u and u
≠ ui+1, then the parity site knows that it missed a Δ-
record and requests are resend from Di. In any case the 
count ui of updates that Di has seen (according to Pj’s 
knowledge) is incremented to the new value u.
Similarly, the number ui(Pj) of Δ-records from Di that 
Pj has seen is incremented.  All other parts of the state 
stay the same. 

States also change when a site sends it state to 
another site.  Data sites also piggy-back their state to 
Δ-messages to the parity sites. Parity sites will 
“spontaneously” send information to a data site, 
triggered either by counting the number of updates 
received, by expiration of a timer, or when a parity 
bucket requests a re-transmit.  The latter occurs if the 
sequence number of a Δ-update more than one more of 
the parity site’s value ui.  In this case the parity site 
“knows” that it missed a Δ-update and requests a 
retransmission.  If a state is received, then the local 
state is changed to reflect the new knowledge 
embedded in the state by setting values to the 
maximum of the old and the new state.  

All data sites log client updates.  All parity sites log 
Δ-records.  These entries are purged if – according to 
the local state – the data site and all parity sites have 
processed the update and the respective Δ-records.      

Example 
Assume that we have two data sites, labeled D1 and 

D2, and two parity sites, P1 and P2, see Figure 2. Data 
sites number updates they receive. A data site 
maintains a state (i,j,k), where i is the last update 
number, j is the last update that it “knows” that P1 has 
received, and k the last that P2 has received.  The 
parity buckets maintain a state for updates from either 
data bucket. The original state at each site is (0,0,0) for 
data sites and (0,0,0)|(0,0,0) for parity sites (Figure 2a).  
Assume that D1 receives three inserts D1,1, D1,2, D1,3,
and creates and sends three Δ-records to P1 and P2.  P2 
does not receive Δ1,2. The states are updated
accordingly (Figure 2b) and each site logs all updates.  

P2 requests a resend of D1,2 and sends its state along.  
Correspondingly, D1 updates its state to (3,0,1) (Figure 
2c) and resends Δ1.2 from its log to P2 (Figure 2d). 
“Spontaneously”, e.g. because a timeout has past since 
the last state exchange, P1 sends its state to D1, 
effectively acknowledging the three updates.  D1 
updates its state, and since min(3,3,1) = 1, it can purge 
its log of update D1,1. When update D1,4 arrives, it 
sends Δ-records to the parity buckets together with its 
state.  Accordingly, P1 and P2 update their states and 
purge their log.  P1’s state changes to (4,4,1) and it can 
purge Δ1,1.  P2’s state changes to (4,3,4) and it can 
purge Δ1,1, Δ1,2,  and Δ1,3.   

6. Failure Recovery 

In our system, members of a reliability group 
monitor each other by periodically exchanging states.  
In addition, a client that does not receive a required 
acknowledgement from a data site report this 
unavailability to the coordinator in LH*RS or to the 
parity buckets in HADRAM. Once an unavailable site 
is reported, the members of the reliability group elect a 
Recovery Coordinator (RC) provided that there are at 
least m of them, otherwise, the unavailability is 
catastrophic. The RC determines a list of available sites 
in the RG, finds replacement sites for lost sites and 
updates the addressing scheme. (We do not address the 
problem of maintaining bucket addresses in a highly 
available SDDS here.) The RC then initiates the 
recovery process.  We recover data sites first and then 
parity sites. While it is possible to recover all sites 
simultaneously, data sites receive priority since clients 
only interact with them. To recover the data sites, all 
participating sites need to be brought first to the same 
state. Since parallel and serial 2PC effectively serialize 
updates at the data sites, at most m updates – one for 
each data site – have to be performed at the parity sites.  
In the case of watermarking, the potential number of 
updates is possibly much larger and determined by the 
number of updates from a data site that do not have to 
be acknowledged. In parallel to these updates, the 
recovery coordinator determines the m sites that it is 
going to use to recalculate the lost data sites.  Based on 
these m sites, the recovery coordinator (which should 
be located at one of the replacement data sites), pre-
calculates the information necessary. In our case, this 
involves inverting an m-by-m matrix in the Galois field 
used by the erasure correcting code, and calculating m
multiplication tables (of the size of the Galois field, if 
the Galois field is small (GF(28), or several small 
tables otherwise). These multiplication tables are used 
to speed up the processing of the data slices coming in 
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from the sites participating in the recovery operation. It 
then requests slices of the site’s data from the m
recovery sites, uses these to reconstruct slices of the 
unavailable data sites’ contents, and send these slices 
to the replacement data sites. 

After recovering the data sites, the missing parity 
sites are reconstructed from the m data sites. When this 
is finished, the data sites apply all the updates that have 
accumulated at them in the normal way and the system 
has regained its old functionality.  

Figure 3: Reconciliation example: Before 
recovery 

Figure 3 gives an example how we use the state 
information to make parity and data sites consistent. 
There we need to recover two out of three data sites in 
a RG using the remaining sites. After exchanging 
states, the states for D2 are (9,9,9).  For D1, P2’s state 
is going to be (7,7,5) showing that updates D1,6 and 
D1,7 need to be redone.  These updates can be retrieved 
from either site D2 or site P1. The D3-state at both 
parity sites is (4,4,4) and no updates need to be 
retrieved.  However, update D3,5 has been lost. This 
loss occurs because we have one site failure and two 
lost messages, more than our availability level k = 2 
can support. 

If a data site needs to be recovered, the RC initiates 
a replacement site with the data (the HADRAM block 
or LH*RS bucket), an initially zero log of updates, and 
state data.  At this point, the replacement site starts to 
fully function as a data site.  In parallel, it recovers the 
data from the lost site in slices.  As the performance 
measurements in [LMS05] shows, a small slice size 
leads to poor performance, but for larger slices the 
recovery times are good and not very dependent on the 
size of the slice.  During recovery, the site satisfies 
read and write requests as soon as possible.   

While HADRAM memory is flat, we implement it 
as a collection of pages, similar to Virtual Memory.  
During the recovery process of a data site, we maintain 
a small data structure for each page that tells us 
whether the page has been reconstructed, and whether 
there is a write to it pending.  Recovery proceeds by 
reconstructing page per page, possibly in batches to use 
larger and hence fewer messages. When a write to one 
or more pages arrives, the site marks the corresponding 
pages as dirty. It then requests reconstruction data from 
the participating sites and blocks until these pages have 
been reconstructed. If a read arrives, the site checks 
whether the area to be read has already been 

reconstructed.  If not, it recovers the pages needed out 
of order, by sending a request to the sites from which it 
receives the recovery data.  When we reconstruct a 
dirty page, we unblock the write operation(s) that 
wrote to that page, which now calculates the Δ-record 
that are sent out to the parity buckets, so that the write 
proceeds as normal.  Reconstruction of a page might 
also cause a read operation to be unblocked.  This then 
proceeds as normal by sending the requested data to 
the client application.  Basically, the HADRAM 
procedure is the same as for LH*RS which also 
recovers requested records with priority, with the one 
complication that HADRAM writes and reads might be 
to more than a single page. 

The algorithm at a reconstructing parity site is 
simpler.  We basically reconstruct the parity site’s data 
slice by slice and then perform all the updates that we 
kept in the log.  In the unlikely case of another site 
becoming unavailable during the reconstruction, we 
restart the process.  Since reconstruction can proceed at 
the rate of a few MB/sec, it is quick.   

Clients will see a short interruption of service when 
a data site becomes unavailable since they address their 
requests to a site that is down. In LH*RS, they contact 
the coordinator (a central agent) that starts recovery 
and also handles the request.  In HADRAM, a handle 
to HADRAM memory contains not only the site where 
the block is stored but also the addresses of the other 
members of the RG.  The client then contacts one of 
these. Eventually, the client receives the address of the 
replacement site, which by then has been selected and 
is either still recovering data or has already entered 
normal mode.  

Our scheme is not designed to handle Byzantine 
failure.  In addition, a very slow data site can be 
replaced by a replacement site, but still serve read 
requests.  If a client writes to such a site, then the 
parity sites will inform the slow data site that it has 
been replaced.  However, the slow site can still answer 
reads until the periodic heart-beat monitoring with the 
parity sites fail.  To increase robustness, we could run a 
protocol like Paxos [L01] in a RG to maintain a robust 
view of which sites are currently considered up or 
down.  However, a system that suffers frequent loss of 
connectivity cannot run HADRAM, since clients will 
not be able to find their data directly and have to take 
recourse to broadcasting “where are you” messages.  

7. Performance Results 

We improve on the parity calculation in [LMS05] 
by constructing tables on the fly for multiplying a 
number of elements with a constant.  This operation 

D1: (7,4,2) D2: (9,4,6) D3: (5,4,4)

P1: 
D1: (7,7,0) 
D2: (9,6,6) 
D3: (4,4,4) 

P2: 
D1: (5,3,5) 
D2: (9,6,9) 
D3: (4,0,4) 
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occurs when processing parity data or during recovery, 
when we multiply the contents at sites involved in 
recovery by multiplying them with a coefficient in the 
recovery matrix.  We found that the overhead of first 
creating multiplication tables is amortized when we 
process more than about 1 MB of data. A typical value 
for multiplying a whole bucket by a single Galois field 
element is 1.6 millisecond per MB of data, obtained on 
a 3 GHz P4 machine. At this range, using tables 
provides a 2-4% gain over using the logs-antilog 
method in [LMS05]. 

Figure 4: Reliability group 
implementation
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Figure 5:  Comparison between response 
times (msec) for 1-500 messages using 1PC 

(top), watermark A and watermark B (bottom). 

We implemented a test-bed as shown in Figure 4 for 
our experiments. In our first set of experiments, we 
measured the speed of updates. We used two different 
acknowledgment schemes for watermarking, 
watermarking A where we wait with the 
acknowledgment to the client until we receive an 
acknowledgment from all parity sites and 
watermarking B, where we do not acknowledge to the 
client but for the very last message.  In Figure 5, we 

present the results of our experiment. The x-axis gives 
the number of updates and the y-axis the time in 
milliseconds to complete the task. In 1-PC, the client 
issues a new request after receiving an 
acknowledgment.  The 1-PC numbers reflect the 
roundtrip from client to data to all parity and back. For 
watermarking, the client sends out bulk messages and 
receive bulk acknowledgments every 10 messages in 
A.  The speed advantage of watermarking B shows the 
costs of client acknowledgments. We also observe that 
even though we used a dedicated network, measured 
times vary by about 5%.  

In our next set of experiments, we use 
watermarking with status exchange every 10 messages 
and acknowledgment to the client after receipt from all 
parity buckets.  All messages from the data server are 
subject to random message loss. Basically, whenever 
we send out a message, the server uses a random 
number generator to decide whether the message 
should be sent.  As messages are lost, our scheme 
demands resending. Accordingly, the timing goes up.  
However, according to our results in Figure 7, even 
70% message loss barely doubles the time it takes to 
process the updates.  For a more realistic percentage of 
losses of 5% and 10%, the differences between the 
update times are barely discernible. 

Regarding recovery of data, we measured the 
components of the recovery process.  We recall that 
this process consists in leadership election (two rounds 
of broadcast messages), matrix inversion, exchange of 
logs to achieve consistency, and the actual recovery 
process.  We use a simple Gaussian algorithm for 
matrix inversion.  The relevant numbers are 9 μsec and 
12.8 μsec for inverting an 8 by 8 matrix, needed when 
there are 8 data servers, and 3 μsec and 4.7 μsec for 
inverting a 4 by 4 matrix, measured on a laptop (1.5 
GHz P4) and one of our 2GHz desktop machines (See 
Figure 7). The time to exchange the logs is equally 
short, encompassing a round of messages going back 
and forth to the participants, but the exact number 
depends on the size of the log.  According to our 
experience, a typical number is in the range of 50 – 
100 μsec.  The bulk of the reconstruction work is taken 
up by transferring the data.  As Figure 8 shows, the 
overall recovery time for a single data bucket is very 
linear, with an average of 9.11 MB/sec reconstruction 
speed without background reads.  We also tested the 
system under load by reading (~ 470 reads per second, 
half of which blocked because the page to be read yet 
had to be reconstructed). Recall that the Galois field 
operations function at a much higher throughput, at 
least 200 MB/sec so that our recovery performance is 
entirely network bound, as was to be expected. When 
such a read blocks, then we have to wait an average of 

Client
512 MB, 2.6 GHz 

Data Server 1 
512 MB, 2.0 GHz 

Data Server 2 
512 MB, 2.0 GHz 

Data Server 3
512 MB, 2.0 GHz 

Parity Server 1 
1 GB, 2.2 GHz 

Data Server 1
1 GB, 2.2 GHz 
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53 μsec, a value that can also be calculated from our 
recovery data.    

0
50

100
150
200
250
300
350
400
450

100 300 500 700 900

# Messages

Ti
m

e 
(m

ill
is

ec
on

ds
)

0% msg loss 30% msg loss
50% msg loss 70% msg loss

Figure 6:  Update speed with message losses. 
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Figure 7:  Matrix inversion times.

Read performance during recovery depends on the 
aggressiveness of reconstruction because giving the 
recovery thread equal priority with the threads dealing 
with client requests can lead to the majority of the 
bandwidth being allocated to recovery.  In order to 
obtain a read value independent of the bandwidth 
allocated to recovery, we ran an experiment where we 
only recovered (512B) pages on demand.  We obtained 
an average of 1138 buckets recovered per second, i.e. 
an average bandwidth of ~.56 MB/sec.  The lower 
number is caused by the additional messaging that is 
needed including additionally hops between the client 
and the server.  In particular, this means that under 

normal circumstances, a read to an unreconstructed 
block takes about 1 msec. 
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Figure 8:  Recovery times with and without 
background reads.

7. Conclusions and Future Work 

We have presented improvements to the update and 
reconstruction performance of LH*RS, a scalable 
distributed data structure with scalable availability and 
to HADRAM, the high-availability layer for generic 
distributed memory SDDS.  These data structures are 
implemented at the application level and are OS 
independent. While providing scalable high availability 
to distributed memory as an OS paradigm might be 
interesting, we are not pursuing this route. We have 
shown that two simple principles: “parity updates can 
be performed out of order”, and “parity updates only 
need to be done before reconstruction” leads to a 
significant better update and recovery implementation.  
Our method has the advantage of providing 
serializability even in the presence of recovery 
operations. Obviously, our log cannot grow to multiple 
sizes of the stored data without great loss of 
performance because of paging; hence we need to add 
an operation that overwrites complete bucket contents.  
These operations will only occur in an SDDS during a 
rare split operation when two new buckets are created 
to replace an old bucket. 
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