
Efficient Updates in Highly Available Distributed Random Access Memory

Damian Cieslicki Stefan Schäckeler Thomas Schwarz
Department of Computer Engineering, Santa Clara University, Santa Clara, CA 95053

damian.cieslicki@us.abb.com, sschaeck@engr.scu.edu, tjschwarz@scu.edu

Abstract

With increased network speeds and throughputs,
multicomputers (a system of computers connected by a
high-speed network) have become an attractive
alternative to store important data in their collective
random access memory. Erasure codes provide space-
optimal data redundancy to protect this type of storage
from node unavailability. They have been used in
LH*RS, the scalable high availability, distributed
version of Linear Hashing. We present and evaluate a
technique that uses the property of linear erasure
correcting codes to make updates transactional and
concurrent with recovery from one or more node
availabilities without locks or two-phase commits. The
technique significantly improves on previous work in
update speed and also allows for serializable updates
to a bucket that is in the process of being recovered.

1. Introduction

As network speeds increase, multicomputers
(systems of computers connected by a high-speed
network) offer unbeatable price/performance ratios. In
particular, we can use their collective RAM to store
large amounts of data. Distributed RAM is about 60 –
70 times faster to access than disk drives (i.e. has
access times around 100 msec) and can grow
practically unlimited by adding nodes. Unfortunately,
a large system is likely to suffer from unavailable
nodes, so that we need to store data redundantly. The
relative high cost of distributed RAM favors the much
more space-efficient erasure correcting codes to
generate this redundancy. Systems such as LH*RS
[MLS04, LMS05] and HADRAM [CS04, CSS06]
implement distributed RAM. The former is a Scalable
Distributed Data Structure (SDDS) [SDDS] with
scalable high availability; the latter provides a layer for
implementing scalable high availability for any SDDS.

We present in this paper a general mechanism for
fast updates and fast reconstruction to recover from
node unavailability. We make progress over LH*RS

[LMS05] by providing much faster small updates. We
achieve this by using the fact that parity information
only needs to cohere when it is used for reconstruction,
though of course incoherence between any
combination of data and parity data prevents successful
recovery. Consequentially, we use lazy
acknowledgments of parity updates during normal
operations. We log updates and only purge the log
when the update has percolated to all parity sites.
Basically, we are looking for the “low watermark”,
therefore the name of our scheme. Before a
reconstruction, we use the logs in order to bring all
data and parity sites to the same state.

2. Related Work

Using erasure codes for redundancy is a standard
method in disk based storage. RAID Level 5 [C+94]
uses the m+1 simple parity code and RAID Level 6 a
number of two-erasures correcting codes. Stonebraker
[SS90] realized the benefits of physically separating
the data in a reliability group. For larger, disk-based
storage systems, erasure coding is also used. For
example, Xin et al. [XMS04] show the importance of
fast recovery for data availability in a very large
storage system. Aguilera et al. [AJX05] propose a
family of algorithms that allows concurrent updates
and recovery operation. Basically, in their scheme,
recovery falls to a client. Once a block has failed, a
new block is created in its stead, with invalid data. A
client that recovers that block locks it and then
proceeds as normal. To insure that the other m blocks
used for recovering are consistent, a list of past writes
is kept and periodically garbage collected. Our scheme
uses a similar list, but reconstruction is done at the
server, consistent with the SDDS. Goodson et al.
[G+04] use erasure-coding to store a single object
redundantly over a number of sites, just as in IDA
[Ra89]. While they are also concerned about good
performance, their main contribution is using
cryptographic hashes, a type of versioning and
quorums to deal with Byzantine failures. Frølund et al.
[F+04] investigate erasure coding for Federated Arrays

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

of Bricks (FAB). They use a quorum protocol to
achieve strict linearizability, something we do not do,
though their method could easily be implemented in
our setting. Using erasure coding becomes popular in
other areas, such as grid-computing. Pitkanen et al.
[P+06] report on an implementation of erasure-code
protected storage for the grid. Similarly, Kubiatowicz
et al. [K+00] propose erasure-coding for OceanStore.
Myriad [C+02] realizes higher availability in a large
disk-based system similar to us by using RS-coding
and reliability groups. The paper shows that the
hardware savings of erasure coding lower in effect the
total cost of ownership. Myriad uses 2PC to keep
updates consistent. Gallersdorfer and Nicola [GN95]
improve performance in a replicated database by
relaxing coherency constraints, a method that is not
directly applicable to our problem.

Our basic design looks very similar to distributed,
shared memory [Esk]. However, distributed shared
memory operates at the operating system level whereas
we describe an application designed to run over any
operating system. In addition, distributed shared
memory enables generic workloads, whereas our work
is more interested in database applications.

3. Overview of Erasure Coding

For ease of reading, we briefly review linear erasure
coding. A m/n systematic, linear, maximum distance
separable erasure code [MS78] takes m data blocks and
adds to them k parity blocks for a total of n = m+k
blocks such that all contents can be reconstructed from
only m of the n blocks. To calculate the contents of the
parity (a.k.a. redundant) blocks, we calculate with
symbols – bit strings of length f with f = 8 or f = 16
being the more popular choices. The set of all possible
symbols form a Galois field GF(2f). Its arithmetic
follows the same rules as for the better known fields
made up by the real or complex numbers. Indeed, it
happens that addition and subtraction are both the bit-
wise exclusive-or (XOR) operation. Assume that X1,
X2, … , Xm are the contents of the data blocks written
as equal-length column vectors with symbols as
coordinates. The contents Xm+1, Xm+2, … , Xn of the
parity blocks are then calculated as

(X1, X2, … Xm, Xm+1, Xm+2, … Xn) = (X1, X2, … Xm)⋅G
with a generator matrix G = (gij) with coefficients gij in
GF(2f) and the properties that the first m rows of G
form an identity matrix and that any m by m submatrix
formed by selecting any m rows from G is invertible.
If we have m data or parity blocks, let’s relabel them
(Y1, Y2 …Ym), and if we create a submatrix H of G
from the corresponding rows, then

(Y1, Y2 … Ym) = (X1, X2 … Xm)⋅H

and since H is invertible, we can recover the data
buckets as (X1, X2 … Xm) = (Y1, Y2… Ym) ⋅H-1 and then
recalculate the parity blocks. Calculating the parity
buckets later makes sense in our context since we need
to satisfy read requests in parallel with recovery.
Otherwise, we can recover data and parity blocks
simultaneously as

(X1, X2… Xm, Xm+1, Xm+2… Xn)⋅H-1⋅G.
For recovery, we need to access the blocks, multiply
them coordinate-wise with an element of the recovery
matrix H-1 and then XOR the products together.

In our setting, we update a single data block at a
time. Let that be block Xi that is changed to X’i. Write
Δ = X’i -Xi. A simple calculation then shows that
parity block Xj changes to X’j = Xj + gijΔi. Thus, to
update, we create the delta-value as the (XOR-)
difference between the old and the new data value and
send it to all sites storing parity blocks. There, we
multiply the Δ block with a coefficient of G and add
the result to the current parity block. Obviously, but
quite important for us, parity updates commute. We
only need parity blocks when we reconstruct data
blocks, but then data and parity data needs to be
consistent for a successful recovery.

4. LH*RS and HADRAM

LH* [LNS96], the distributed version of linear
hashing, stores records consisting of key and a non-key
field in buckets based on a hash of the key. The
number of buckets and hence the hash function
changes with the number of buckets, but clients do not
have direct access to this number in order to avoid the
bottleneck of a centralized addressing scheme. Clients
might make an addressing mistake (because their view
of the file state is not the accurate one) but they are
guaranteed not to make the same mistake twice and
they are guaranteed that their requests reach the
intended bucket typically in a single hop, sometimes a
double hop, and only rarely a triple hop. LH* thus
offers access times to the records that are independent
of the file size. However, as the number of buckets
and hence the number of servers employed increases,
an LH* file becomes more likely to suffer from node
unavailability. For this reason, LH*RS places the LH*
buckets (now called the data buckets) into Reliability
Groups (RG) of size m and adds to each reliability
group k= n − m parity buckets. The parity buckets
contain parity records. A record in a bucket in an RG
belongs to a record group made up of at most one
record in each bucket. The records in the parity
buckets belong to one record group and have an
enumerator (the rank) as the key, a list of the keys of

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

the data records as a second field, and a parity field
calculated from a linear m/n erasure correcting code of
all the non-key fields in the data buckets in the record
group. When a data bucket fails, LH*RS first finds m
available buckets in the RG. It then recovers each data
record from the m available records in the record
group. The key comes from the list of key of any
parity record, whereas the non-key field is recovered
with the m/n code. LH*RS reconstructs individual
records for a waiting client before reconstructing a lost
data bucket. LH*RS also increases n when the file
becomes larger, thus guaranteeing constant minimum
availability of the complete file. Details of LH*RS are
in [LMS05].

Highly Available Distributed Random Access
Memory (HADRAM) [CSS06] provides scalable high-
availability to any SDDS. It stores user data in blocks
(of size several MBs at least) in the distributed RAM
of the multicomputer and just as LH*RS groups several
of these data HADRAM blocks (H-blocks) into
reliability groups and then adds parity blocks to the
reliability group. All blocks in a RG are stored on
different nodes of the multicomputer. In difference to
LH*RS, an H-block is flat, unstructured memory.

LH*RS as an SDDS stores data in the manner of a
relational database table, but typically with simple
transactions. We can therefore expect the writes
(inserts, updates) to be that of a single record. The
only exception arises from a bucket split that moves
about half of the data in a bucket to a new bucket. We
are not concerned with the split operation in this paper,
but assume that all writes are small. Our method still
handles very large writes, but performance would
suffer. HADRAM as a layer under an SDDS inherits
the same performance characteristics.

Figure 1: Update of a HADRAM block.

Updates in both structures follow the pattern set by
the “Small Writes” in RAID Level 5. To be more
precise, a client sends an update to a data site. In the
case of LH*RS, the update is to a record, in the case of
HADRAM, the update specifies an offset in the block
and a replacement string. In either case, the data site

generates a Δ-record, that consists of the XOR between
the new and the old value and metadata such as the
record key for LH*RS and the block number and offset
for HADRAM. The data site sends the Δ-record to all
parity sites. These calculate the new parity data by
multiplying the Δ-record with a certain Galois field
element (defined by the linear erasure correcting code
used) and then XOR it to the old parity data. Figure 1
gives an example for an update in HADRAM.

Update operations at a parity bucket commute. In
order to use the parity data for data reconstruction, we
need to have applied every update exactly once, but it
does not matter in what order. In addition, we can
delay parity data update until we need the parity data
for reconstruction.

Example
Assume that we have HADRAM blocks organized

in a reliability group with two data blocks and two
parity blocks. For the encoding, we choose the same
code as in [LMS05]. Figure 1 presents the initial
contents in hexadecimal notation before and after an
update. It happens that the contents in the first parity
block is the XOR of the two data blocks, however, the
calculation of the second parity block is more involved
and involves Galois field multiplication. The first data
block contains the string “Santa Clara, CA” whereas
the second one the string “Tulsa, OK”. An update now
arrives at data site 2, requesting contra-factually to
change the state of Tulsa to Texas. Data site 2
calculates the XOR of the old and new value and
creates the Δ-record in a compressed version. It then
sends the Δ-record to the parity sites, which use it to
update their content. The first parity site simply XOR
the difference to the substring specified by offset and
length, whereas the second parity site has first to
multiply each byte in the string “1b 2e 78 61 73” with
a certain Galois field element determined by the code
and the issuing data site and then XOR the result to its
content starting at the offset.

5. Transaction Processing Messaging

A data update (i.e. a record insert, delete, and
modification in LH*RS; in HADRAM every
modification of a block is an update) needs to be
performed at the data bucket and at all the parity
buckets for sure. A simple scheme is the well known
One-Phase-Commit (1PC) [S79, BG83, CS84…], in
which the parity site acknowledges all update requests
from the data site and perform them immediately. After
receiving all acks from the parity site, the data site can
commit the update and ack to the client. This simple

D1: 53 61 6e 74 61 20 43 6c 61 72 61 2c 20 43 41 00
D2: 54 75 6c 73 61 2c 20 4f 4b 00 00 00 00 00 00 00
P1: 07 14 02 07 00 0c 63 23 2a 72 61 2c 20 43 41 00
P2: 48 07 7f 4e d2 ff 24 34 51 72 61 2c 20 43 41 00

D1: 53 61 6e 74 61 20 43 6c 61 72 61 2c 20 43 41 00
D2: 54 75 6c 73 61 2c 20 54 65 78 61 73 00 00 00 00
P1: 07 14 02 07 00 0c 63 38 04 0a 00 5f 20 43 41 00
P2: 48 07 7f 4e d2 ff 24 77 ba b6 d2 16 20 43 41 00

Update: Change block 2, pos. 8 – 12 to 54 65 78 61 73.
Δ-record is (Data2, offset 8, length 5, “1b 2e 78 61

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

scheme is not sufficient for two or more parity sites in
an RG as the following example shows. Assume that a
data site sends a Δ-record to two parity sites, but fails
during the send so that only one parity site receives the
Δ-record. There is no information left in the system to
decide which parity site has the correct value. Using
both to recover the data site contents yields neither the
new nor the old value, but gibberish. Logging all
updates at parity sites (alone) does not help since there
is no way to discard old update entries. The LH*RS
prototype [LMS05] used 1PC because it assumed a
completely reliable network.

An alternative is a variant of Two Phase Commit
(2PC), in which the data site sends the delta record to
all parity sites in a fixed order. The parity sites place
the Δ-record in a queue of all such requests and send an
acknowledgement to the data site. The data site waits
for all n−m acks from the parity sites to arrive and then
sends out a “commit” message to all the parity sites in
the same order. The order in this serial 2PC protocol
allows parity sites with competing views of the state of
a lost data site (for example, whether the data site is in
phase 1 or has already moved to phase 2) to reconstruct
the data site state up to messages sent to also failed
parity sites. Its obvious drawback is the much longer
time it takes to acknowledge to a client that the update
has been performed for sure, that is, without the
possibility that a subsequent data site failure and
reconstruction recreates the contents before the update.
This is the only protocol in [LMS05] that achieves
transactional behavior of updates in the presence of
failures.

Parallel 2PC (in which the data site sends out phase
1 and phase 2 messages to the parity buckets as a
multicast) in contrast is much faster. However, if a
data site fails in the middle of an update and if
messages are lost, then we cannot always successfully
restore parity sites to coherence. For an example,
consider the following two scenarios: First, assume
that the updating data site fails in phase 1, but that only
parity site 1 has received the Δ-record. Second,
assume that the updating data site fails in phase 2 and
that only parity site 2 has received the “commit”
message. There is not enough information at surviving
parity sites 1 and 2 to decide between these scenarios.
The final protocol investigated (and the best according
to our experimental evaluation) uses logging; we call it
low-watermarking because participants exchange
information about which site has received an update
and incorporated it for sure in order to garbage-collect
the log. When a failure is detected, all surviving sites
exchange logs to bring each other to the same state.
Acknowledgments in this protocol pose an interesting
problem. If the data site acknowledges after sending

out the Δ-records to all k parity sites, the update is k-
available in the sense that it is retained if no more than
a total of k messages and sites in the RG become
unavailable. If it acknowledges after receiving the
(delayed) acknowledgment of the parity sites, then the
update is k-available in the sense that the data with the
update survives up to k site unavailabilities in the RG.

In more detail, low-watermarking numbers each
update arriving at a data site consecutively. By
appending this number to the unique identifier of the
data site, all updates receive a unique label. (In LH*RS,
clients might send an update request to another site, but
the scheme forwards the update request to the correct
data site in at most two additional hops. The correct
LH* bucket always knows that it is the correct one
handling this update and only it will talk to the parity
buckets. Similarly for migrating buckets due to
reconstruction of unavailable buckets.)

Figure 2: Update example

Using watermarking, sites never explicitly
acknowledge messages. Rather, they implicitly use
bulk acknowledgments by maintaining and exchanging
a state that encodes the messages that were received.

 The state of data site Di contains the last update
number ui that it has seen. For each parity site Pj, it
also contains the number of updates ui(Pj) that are
directed to Di and for which Di knows that the parity
site Pj has received the corresponding Δ-update. The
data state is hence made up of k + 1 numbers, where k
is the number of parity sites in the RG.

P1:(0,0,0)|(0,0,0) (a) P2:(0,0,0)|(0,0,0)D2:(0,0,0)D1:(0,0,0)

P1:(3,3,0)|(0,0,0) (b) P2:(3,0,1)|(0,0,0)D2:(0,0,0)D1:(3,0,0)
D1,1

D1,2

D1,3

P1:(3,3,0)|(0,0,0)
Δ1,1

Δ1,2

Δ1,3

(c) P2:(3,0,3)|(0,0,0)
Δ1,1

-
Δ1,3

D2:(0,0,0)D1:(3,0,1)
D1,1

D1,2

D1,3

P1:(3,3,0)|(0,0,0)
Δ1,1

Δ1,2

Δ1,3

(d) P2:(3,0,3)|(0,0,0)
Δ1,1

Δ1,2

Δ1,3

D2:(0,0,0)D1:(3,0,0)
D1,2

D1,2

D1,3

P1:(3,3,0)|(0,0,0)
Δ1,1

Δ1,2

Δ1,3

(e) P2:(3,0,3)|(0,0,0)
Δ1,1

Δ1,2

Δ1,3

D2:(0,0,0)D1:(3,3,1)
D1,2

D1,3

P1:(3,3,0)|(0,0,0)
Δ1,2

Δ1,3

Δ1,4

(f) P2:(4,3,4)|(0,0,0)
Δ1,4

D2:(0,0,0)D1:(4,3,1)
D1,2

D1,3

D1,4

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

The state of a parity site Pj consists of n
components, one each for each data site. Each state
component contains the state of the data site as the
parity site knows about it.

States are updated whenever an update, either from
a client in the case of a data site or a Δ-record from a
data site in the case of a parity site, arrives. They are
also updated when sites exchange states. In more
detail, assume that a client update arrives at a data site.
In this case, the data site increments its count ui. If a Δ-
record arrives from data site Di at parity site Pj, then
only the component corresponding to Di in Pj’s state
changes. If the Δ-record has sequence number u and u
≠ ui+1, then the parity site knows that it missed a Δ-
record and requests are resend from Di. In any case the
count ui of updates that Di has seen (according to Pj’s
knowledge) is incremented to the new value u.
Similarly, the number ui(Pj) of Δ-records from Di that
Pj has seen is incremented. All other parts of the state
stay the same.

States also change when a site sends it state to
another site. Data sites also piggy-back their state to
Δ-messages to the parity sites. Parity sites will
“spontaneously” send information to a data site,
triggered either by counting the number of updates
received, by expiration of a timer, or when a parity
bucket requests a re-transmit. The latter occurs if the
sequence number of a Δ-update more than one more of
the parity site’s value ui. In this case the parity site
“knows” that it missed a Δ-update and requests a
retransmission. If a state is received, then the local
state is changed to reflect the new knowledge
embedded in the state by setting values to the
maximum of the old and the new state.

All data sites log client updates. All parity sites log
Δ-records. These entries are purged if – according to
the local state – the data site and all parity sites have
processed the update and the respective Δ-records.

Example
Assume that we have two data sites, labeled D1 and

D2, and two parity sites, P1 and P2, see Figure 2. Data
sites number updates they receive. A data site
maintains a state (i,j,k), where i is the last update
number, j is the last update that it “knows” that P1 has
received, and k the last that P2 has received. The
parity buckets maintain a state for updates from either
data bucket. The original state at each site is (0,0,0) for
data sites and (0,0,0)|(0,0,0) for parity sites (Figure 2a).
Assume that D1 receives three inserts D1,1, D1,2, D1,3,
and creates and sends three Δ-records to P1 and P2. P2
does not receive Δ1,2. The states are updated
accordingly (Figure 2b) and each site logs all updates.

P2 requests a resend of D1,2 and sends its state along.
Correspondingly, D1 updates its state to (3,0,1) (Figure
2c) and resends Δ1.2 from its log to P2 (Figure 2d).
“Spontaneously”, e.g. because a timeout has past since
the last state exchange, P1 sends its state to D1,
effectively acknowledging the three updates. D1
updates its state, and since min(3,3,1) = 1, it can purge
its log of update D1,1. When update D1,4 arrives, it
sends Δ-records to the parity buckets together with its
state. Accordingly, P1 and P2 update their states and
purge their log. P1’s state changes to (4,4,1) and it can
purge Δ1,1. P2’s state changes to (4,3,4) and it can
purge Δ1,1, Δ1,2, and Δ1,3.

6. Failure Recovery

In our system, members of a reliability group
monitor each other by periodically exchanging states.
In addition, a client that does not receive a required
acknowledgement from a data site report this
unavailability to the coordinator in LH*RS or to the
parity buckets in HADRAM. Once an unavailable site
is reported, the members of the reliability group elect a
Recovery Coordinator (RC) provided that there are at
least m of them, otherwise, the unavailability is
catastrophic. The RC determines a list of available sites
in the RG, finds replacement sites for lost sites and
updates the addressing scheme. (We do not address the
problem of maintaining bucket addresses in a highly
available SDDS here.) The RC then initiates the
recovery process. We recover data sites first and then
parity sites. While it is possible to recover all sites
simultaneously, data sites receive priority since clients
only interact with them. To recover the data sites, all
participating sites need to be brought first to the same
state. Since parallel and serial 2PC effectively serialize
updates at the data sites, at most m updates – one for
each data site – have to be performed at the parity sites.
In the case of watermarking, the potential number of
updates is possibly much larger and determined by the
number of updates from a data site that do not have to
be acknowledged. In parallel to these updates, the
recovery coordinator determines the m sites that it is
going to use to recalculate the lost data sites. Based on
these m sites, the recovery coordinator (which should
be located at one of the replacement data sites), pre-
calculates the information necessary. In our case, this
involves inverting an m-by-m matrix in the Galois field
used by the erasure correcting code, and calculating m
multiplication tables (of the size of the Galois field, if
the Galois field is small (GF(28), or several small
tables otherwise). These multiplication tables are used
to speed up the processing of the data slices coming in

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

from the sites participating in the recovery operation. It
then requests slices of the site’s data from the m
recovery sites, uses these to reconstruct slices of the
unavailable data sites’ contents, and send these slices
to the replacement data sites.

After recovering the data sites, the missing parity
sites are reconstructed from the m data sites. When this
is finished, the data sites apply all the updates that have
accumulated at them in the normal way and the system
has regained its old functionality.

Figure 3: Reconciliation example: Before
recovery

Figure 3 gives an example how we use the state
information to make parity and data sites consistent.
There we need to recover two out of three data sites in
a RG using the remaining sites. After exchanging
states, the states for D2 are (9,9,9). For D1, P2’s state
is going to be (7,7,5) showing that updates D1,6 and
D1,7 need to be redone. These updates can be retrieved
from either site D2 or site P1. The D3-state at both
parity sites is (4,4,4) and no updates need to be
retrieved. However, update D3,5 has been lost. This
loss occurs because we have one site failure and two
lost messages, more than our availability level k = 2
can support.

If a data site needs to be recovered, the RC initiates
a replacement site with the data (the HADRAM block
or LH*RS bucket), an initially zero log of updates, and
state data. At this point, the replacement site starts to
fully function as a data site. In parallel, it recovers the
data from the lost site in slices. As the performance
measurements in [LMS05] shows, a small slice size
leads to poor performance, but for larger slices the
recovery times are good and not very dependent on the
size of the slice. During recovery, the site satisfies
read and write requests as soon as possible.

While HADRAM memory is flat, we implement it
as a collection of pages, similar to Virtual Memory.
During the recovery process of a data site, we maintain
a small data structure for each page that tells us
whether the page has been reconstructed, and whether
there is a write to it pending. Recovery proceeds by
reconstructing page per page, possibly in batches to use
larger and hence fewer messages. When a write to one
or more pages arrives, the site marks the corresponding
pages as dirty. It then requests reconstruction data from
the participating sites and blocks until these pages have
been reconstructed. If a read arrives, the site checks
whether the area to be read has already been

reconstructed. If not, it recovers the pages needed out
of order, by sending a request to the sites from which it
receives the recovery data. When we reconstruct a
dirty page, we unblock the write operation(s) that
wrote to that page, which now calculates the Δ-record
that are sent out to the parity buckets, so that the write
proceeds as normal. Reconstruction of a page might
also cause a read operation to be unblocked. This then
proceeds as normal by sending the requested data to
the client application. Basically, the HADRAM
procedure is the same as for LH*RS which also
recovers requested records with priority, with the one
complication that HADRAM writes and reads might be
to more than a single page.

The algorithm at a reconstructing parity site is
simpler. We basically reconstruct the parity site’s data
slice by slice and then perform all the updates that we
kept in the log. In the unlikely case of another site
becoming unavailable during the reconstruction, we
restart the process. Since reconstruction can proceed at
the rate of a few MB/sec, it is quick.

Clients will see a short interruption of service when
a data site becomes unavailable since they address their
requests to a site that is down. In LH*RS, they contact
the coordinator (a central agent) that starts recovery
and also handles the request. In HADRAM, a handle
to HADRAM memory contains not only the site where
the block is stored but also the addresses of the other
members of the RG. The client then contacts one of
these. Eventually, the client receives the address of the
replacement site, which by then has been selected and
is either still recovering data or has already entered
normal mode.

Our scheme is not designed to handle Byzantine
failure. In addition, a very slow data site can be
replaced by a replacement site, but still serve read
requests. If a client writes to such a site, then the
parity sites will inform the slow data site that it has
been replaced. However, the slow site can still answer
reads until the periodic heart-beat monitoring with the
parity sites fail. To increase robustness, we could run a
protocol like Paxos [L01] in a RG to maintain a robust
view of which sites are currently considered up or
down. However, a system that suffers frequent loss of
connectivity cannot run HADRAM, since clients will
not be able to find their data directly and have to take
recourse to broadcasting “where are you” messages.

7. Performance Results

We improve on the parity calculation in [LMS05]
by constructing tables on the fly for multiplying a
number of elements with a constant. This operation

D1: (7,4,2) D2: (9,4,6) D3: (5,4,4)

P1:
D1: (7,7,0)
D2: (9,6,6)
D3: (4,4,4)

P2:
D1: (5,3,5)
D2: (9,6,9)
D3: (4,0,4)

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

occurs when processing parity data or during recovery,
when we multiply the contents at sites involved in
recovery by multiplying them with a coefficient in the
recovery matrix. We found that the overhead of first
creating multiplication tables is amortized when we
process more than about 1 MB of data. A typical value
for multiplying a whole bucket by a single Galois field
element is 1.6 millisecond per MB of data, obtained on
a 3 GHz P4 machine. At this range, using tables
provides a 2-4% gain over using the logs-antilog
method in [LMS05].

Figure 4: Reliability group
implementation

0

50

100

150

200

0 250 500

Figure 5: Comparison between response
times (msec) for 1-500 messages using 1PC

(top), watermark A and watermark B (bottom).

We implemented a test-bed as shown in Figure 4 for
our experiments. In our first set of experiments, we
measured the speed of updates. We used two different
acknowledgment schemes for watermarking,
watermarking A where we wait with the
acknowledgment to the client until we receive an
acknowledgment from all parity sites and
watermarking B, where we do not acknowledge to the
client but for the very last message. In Figure 5, we

present the results of our experiment. The x-axis gives
the number of updates and the y-axis the time in
milliseconds to complete the task. In 1-PC, the client
issues a new request after receiving an
acknowledgment. The 1-PC numbers reflect the
roundtrip from client to data to all parity and back. For
watermarking, the client sends out bulk messages and
receive bulk acknowledgments every 10 messages in
A. The speed advantage of watermarking B shows the
costs of client acknowledgments. We also observe that
even though we used a dedicated network, measured
times vary by about 5%.

In our next set of experiments, we use
watermarking with status exchange every 10 messages
and acknowledgment to the client after receipt from all
parity buckets. All messages from the data server are
subject to random message loss. Basically, whenever
we send out a message, the server uses a random
number generator to decide whether the message
should be sent. As messages are lost, our scheme
demands resending. Accordingly, the timing goes up.
However, according to our results in Figure 7, even
70% message loss barely doubles the time it takes to
process the updates. For a more realistic percentage of
losses of 5% and 10%, the differences between the
update times are barely discernible.

Regarding recovery of data, we measured the
components of the recovery process. We recall that
this process consists in leadership election (two rounds
of broadcast messages), matrix inversion, exchange of
logs to achieve consistency, and the actual recovery
process. We use a simple Gaussian algorithm for
matrix inversion. The relevant numbers are 9 μsec and
12.8 μsec for inverting an 8 by 8 matrix, needed when
there are 8 data servers, and 3 μsec and 4.7 μsec for
inverting a 4 by 4 matrix, measured on a laptop (1.5
GHz P4) and one of our 2GHz desktop machines (See
Figure 7). The time to exchange the logs is equally
short, encompassing a round of messages going back
and forth to the participants, but the exact number
depends on the size of the log. According to our
experience, a typical number is in the range of 50 –
100 μsec. The bulk of the reconstruction work is taken
up by transferring the data. As Figure 8 shows, the
overall recovery time for a single data bucket is very
linear, with an average of 9.11 MB/sec reconstruction
speed without background reads. We also tested the
system under load by reading (~ 470 reads per second,
half of which blocked because the page to be read yet
had to be reconstructed). Recall that the Galois field
operations function at a much higher throughput, at
least 200 MB/sec so that our recovery performance is
entirely network bound, as was to be expected. When
such a read blocks, then we have to wait an average of

Client
512 MB, 2.6 GHz

Data Server 1
512 MB, 2.0 GHz

Data Server 2
512 MB, 2.0 GHz

Data Server 3
512 MB, 2.0 GHz

Parity Server 1
1 GB, 2.2 GHz

Data Server 1
1 GB, 2.2 GHz

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

53 μsec, a value that can also be calculated from our
recovery data.

0
50

100
150
200
250
300
350
400
450

100 300 500 700 900

Messages

Ti
m

e
(m

ill
is

ec
on

ds
)

0% msg loss 30% msg loss
50% msg loss 70% msg loss

Figure 6: Update speed with message losses.

0
50

100
150
200
250
300
350
400
450
500

0 4 8 12 16 20 24 28 32
Matrix Dimension

Ti
m

e
(m

ic
ro

se
co

nd
s)

2.0 GHz desktop 1.5 GHz laptop

Figure 7: Matrix inversion times.

Read performance during recovery depends on the
aggressiveness of reconstruction because giving the
recovery thread equal priority with the threads dealing
with client requests can lead to the majority of the
bandwidth being allocated to recovery. In order to
obtain a read value independent of the bandwidth
allocated to recovery, we ran an experiment where we
only recovered (512B) pages on demand. We obtained
an average of 1138 buckets recovered per second, i.e.
an average bandwidth of ~.56 MB/sec. The lower
number is caused by the additional messaging that is
needed including additionally hops between the client
and the server. In particular, this means that under

normal circumstances, a read to an unreconstructed
block takes about 1 msec.

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50

S iz e of B uck et (MB)

Ti
m

e
(m

ill
i-s

ec
on

ds
)

Without Backgr ound Reads With Backgr ound Reads

Figure 8: Recovery times with and without
background reads.

7. Conclusions and Future Work

We have presented improvements to the update and
reconstruction performance of LH*RS, a scalable
distributed data structure with scalable availability and
to HADRAM, the high-availability layer for generic
distributed memory SDDS. These data structures are
implemented at the application level and are OS
independent. While providing scalable high availability
to distributed memory as an OS paradigm might be
interesting, we are not pursuing this route. We have
shown that two simple principles: “parity updates can
be performed out of order”, and “parity updates only
need to be done before reconstruction” leads to a
significant better update and recovery implementation.
Our method has the advantage of providing
serializability even in the presence of recovery
operations. Obviously, our log cannot grow to multiple
sizes of the stored data without great loss of
performance because of paging; hence we need to add
an operation that overwrites complete bucket contents.
These operations will only occur in an SDDS during a
rare split operation when two new buckets are created
to replace an old bucket.

Acknowledgment

We would like to express our appreciation to Jim Gray
and Microsoft Research (BARC) for generous financial
support and him and Witold Litwin for advice.

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

References

[AJX05] M. Aguileras, R. Janakiraman, L. Xu: Using
erasure codes efficiently for storage in a distributed system.
Proceedings 2005 International Conference on Dependable
Systems and Networks (DSN05).

[BG83] P. Bernstein, N. Goodman: The failure and
recovery problem for replicated databases. ACM Symp.
Principles of Distributed Computing, Montreal, Canada, 114-
122, 1983.

[CS84] M. Carey, M. Stonebraker: The performance of
concurrency control algorithms for database management
systems, VLDB, 1984.

[C+02] F. Chang, M. Ji, S. Leung, J. MacCormick, S. Perl, L.
Zhang: Myriad: Cost-effective disaster tolerance.
Proceedings 1st USENIX Conference on File and Storage
Technologies (FAST02), 2002.

[C+94] P. Chen, E. Lee, G. Gibson, R. Katz, D. Patterson:
RAID: high-performance, reliable secondary storage. ACM
Computing Surveys, Vol. 26(2), June 1994, p. 145 – 185.

[CS04] D. Cieslicki, T. Schwarz.: Power control center
applications using highly available distributed RAM
(HADRAM), Proc., Carnegie Mellon Transmissions
Conference, Dec. 15-16 2004, Pittsburgh, USA.

[CSS06] D. Cieslicki, S. Schäckeler, T. Schwarz: Highly
Available Distributed RAM (HADRAM): Scalable
availability for scalable distributed data structures. In Proc.
7th Workshop on Distributed Algorithms and Structures
(WDAS06).

[Esk] R. Eskicioglu: A comprehensive bibliography of
distributed shared memory.
www.cs.umd.edu/~keleher/bib/dsmbiblio/dsmbiblio.html

[F+04] S. Frølund, A. Merchant, Y. Saito, S. Spence, A.
Veitch: A decentralized algorithm for erasure-coded virtual
disks. Proceedings of the 2004 International Conference on
Dependable Systems and Networks (DSN04).

[GN95] R. Gallersdorfer, M. Nicola: Improving performance
in replicated databases through relaxed coherency, Proc. 21st
VLDB Conference, Zurich, Switzerland 1995.

[G+04] G. Goodson, J. Wylie, G. Ganger, M. Reiter:
Efficient Byzantine-tolerant erasure-coded storage.
Proceedings 2004 International Conference on Dependable
Systems and Networks (DSN04).

[G+00] S. Gribble, E. Brewer, J. Hellerstein, D. Culler:
Scalable distributed data structures for internet service
construction, Proceedings 4th USENIX Symposium on
Operating System Design and Implementation (OSDI 2000),
San Diego, CA, October 2000.

[K+00] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,
P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, B. Zhao. OceanStore: An architecture
for global-scale persistent storage. Proc. 9th International

Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Nov. 2000.

[L01] L. Lamport: Paxos made simple. ACM Sigacts News
32(4):18-25, 2001.

[LNS96] W. Litwin, M. A. Neimat, D. Schneider: LH* A
scalable, distributed data structure. ACM Transactions on
Database Systems, Dec. 1996.

[LMS05] W. Litwin, R. Moussa, T. Schwarz: LH*RS – A
highly-available scalable distributed data structure, ACM
Transactions on Database Systems (TODS), Vol. 30(3).
2005.

[MS78] F. MacWilliams, N. Sloane: The theory of error
correcting codes. Amsterdam; New York: New York, North-
Holland Pub. 1978.

[MLS04] R. Moussa, W. Litwin, T. Schwarz: LH*RS, A
highly available distributed data storage system.
(Demonstration). Proceedings 30th VLDB Conference,
Toronto, Canada, 2004.

[Ra89] M. Rabin. Efficient dispersal of information for
security, load balancing, and fault tolerance Journal of the
ACM (JACM), Volume 36(2), p. 335-348, April 1989.

[P+06] M. Pitkanen, R. Moussa, M. Swany, and T. Niemi:
Erasure codes for increasing the availability of grid data
storage. Proc. International Conference on Internet and Web
Applications and Services (ICIW’06), February 2006.

[SDDS] SDDS bibliography: ceria.dauphine.fr /SDDS-
bibliography.html

[S79] M. Stonebraker. Concurrency control and consistency
of multiple copies in distributed INGRES. IEEE Transactions
on Software Engineering, SE-5:188-194, 1979.

[SS90] M. Stonebraker and G. Schloss: Distributed RAID -
A New Multiple Copy Algorithm. Proc. 6th International
Conference on Data Engineering, 430 – 437, 1990.

[XMS04] Q. Xin, E. Miller, T. Schwarz. Evaluation of
Distributed Recovery in Large-Scale Storage Systems. Proc.
13th IEEE Inter. Symposium on High Performance
Distributed Computing, Honolulu (HPDC-13), HI, June 4-6,
2004.

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

