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Abstract—We present a disk array organization that can sur-
vive three simultaneous disk failures while only using exclusive-
or operations to calculate the parities that generate this failure
tolerance.

The reliability of storage systems using magnetic disks depends
on how prone individual disks are to failure. Unfortunately, disk
failure rates are impossible to predict and it is well known that
individual batches might be subject to much higher failure rates
at some point during their lifetime. It is also known that many
disk drive families, but not all, suffer a substantially higher
failure rate at the beginning and some at the end of their
economic lifespan.

Our proposed organization can be built on top of a dense two-
failure tolerant layout using only exclusive-or operations and with
a ratio of parity to data disks of 2/k. If the disk failure rates are
higher than expected, the new organization can be super-imposed
on the existing two-failure tolerant organization by introducing
(k+ 1)/2 new parity disks and (k+ 1)/2 new reliability stripes
to yield a three-failure tolerant layout without moving any data
or calculating any other parity but the new one. We derive the
organization using a graph visualization and a construction by
Lawless of factoring a complete graph into paths.

I. INTRODUCTION

While flash technology has conquered an important segment
of the storage market and while new storage technologies
such as phase-change memories hold promises for the future,
magnetic disk drives will archive the majority of the hundreds
of exabytes of data stored annually. This is because of the
attractive cost over capacity ratio of disks, which now (2015)
stands at less than three cents per GB of storage.

Recent studies on large-scale storage installations have be-
gun to shed light on the failure behavior of disks. In summary,
disks in large installation fail at higher rates than the data
sheet specifications. Historically, many researchers assumed
that failure rates of disks follow a bathtub curve with high
failure rates at the beginning (burn-in) and at the end (wear-
out) of the economic lifespan, but this behavior is often not
observed. Dependence on utilization and ambient temperature
also appear to vary from installation to installation. Latent
sector errors are an important source of data loss [1], [20],
[21], [19]. Because latent sector errors cannot be ignored and
because the observed failure rates are in general less than
10% per year, two-failure tolerance is sufficient for most disks
arrays. A recent study by Beach showed however that these
rates are average and that individual disk batches can evidence

much higher failure rates. Beach reports a batch of 539 disks
from a reputable manufacturer that failed at a rate of 25% per
year [2].

Under these circumstances, higher levels of failure tolerance
for disk arrays become important. In addition, “hardening” a
disk array also makes sense [14]. Hardening is the process of
adding additional parity information to an array in order to
increase the level of failure tolerance. It constitutes a reaction
to an increase in the observed disk failure rate beyond the
worst failure rates used in the design of the array. Designing
storage arrays for failure rates close to the worst case is
rarely a good idea as it would result in needless complex
and costly systems. Unfortunately, sometimes reality is worse
than planned. If a batch of disks turns out to not be quite
so trustworthy, hardening allows an administrator to use new
parity data stored elsewhere in the data center to have the
existing group of disks meet their reliability targets without
having to move the data themselves.

We present a three failure-tolerant organization of a disk
array using a single exclusive-or operation to calculate the
parity in an individual reliability stripe. Our organization is
based on the construction presented in previous work, [22],
which uses the least number of parity disks and of data disks
for a given ratio 2 to (n � 1) of parity to data disks. In
this organization, each data disk is located in two different
reliability stripes with n� 1 data disks and one parity disk.
The organization has n(n�1)/2 data disks and n parity disks
for a total of n(n + 1)/2 disks. We define and investigate
an organization built on top of this organization. This new
organization introduces additional reliability stripes of the
same size as the already existing ones such that every data
disk now belongs to three reliability stripes. This implies
the organization of additional n/2 reliability stripes and the
introduction of that many new parity drives. The construction
is feasible whenever n is even and the resulting layout is three-
failure tolerant. The additional protection can be constructed
on need (hardening). The construction is based on a theorem
in combinatorics by Lawless [12]. As the organization uses
fixed parity disks, the organization is suited only for archival
storage systems.

We present a visualization of disk array layouts where all
data disks belong to two different reliability stripe (each with
one parity drive containing the exclusive-or parity of the data
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Fig. 1: Left: The two-dimensional layout for a disk array. A,
B, . . . I are data disks and P1, . . ., P6 parity disks. Right: The
corresponding graph visualization.

disks in the stripe), present Lawless construction of factoring a
complete graph into paths, and define our three-failure tolerant
layout. We then derive the resilience of the design against four
and five disk failures. We then present a reliability analysis of
the resulting design and show that the design is less likely to
loose data than am equally dimensioned RAID Level 6 with
three parity disks per stripe given the same number of failed
disks. We also show that hardening the two-failure tolerant
design results in equal or better reliability at three times a
reasonable failure rate.

II. CONSTRUCTION

We consider disk arrays laid out by flat XOR-codes [6].
This means that all data disks are organized into reliability
stripes with k data and one parity disk. The parity disk contains
the exclusive-or of the data disks. Because we separate client
data and parity data on different devices, the layout is only
appropriate for archival workloads. While not necessary, we
also assume that the size k of the reliability stripe is constant.

A. Two-failure tolerant disk array layouts and their relation-
ship to mathematical graphs

In order to be two-failure tolerant, every disk needs to be
in two different reliability stripes. Placing a data disk in three
(or more) reliability stripes implies updating parity three (or
more) times with each change to the disk’s content. To limit
this operational overhead, we therefore want to place each
disk in exactly two reliability stripes. Reversely, two different
reliability stripes can only intersect in at most one disk. (If two
reliability stripes were to intersect in two disks A and B, then
we can pick arbitrary disk contents X , change the contents of
A to A�X , the exclusive-or of A and X , change the contents of
B to B�X without changing the contents of the parity drives
of these two stripes because the changes cancel each other
out. Therefore, these two stripes cannot possibly protect the
contents of these two disks against failure.)

A consequence of these simple, often made observations is
that each data disk is determined by the two reliability stripes
to which it belongs. We can now represent the layout of such a
two-failure tolerant disk array by labeling all reliability stripes
with consecutive numbers 0, 1, . . ., n�1, label the parity disks
with the stripe to which they belong, and the data disks with

the number of the two stripes to which the data disk belongs.
Thus, the parity disks have labels in

V = {0,1, . . . ,n�1}= Zn

(where Zn as usual denotes the residue classes modulo n) and
the data disks have labels in

E = {(i, j)|i 6= j, i, j 2 Zn}.
Since an (undirected) graph is given exactly by two sets
(V,E) of this form, it turns out that the layout of all disk
arrays with two-failure tolerance defines and is defined by an
undirected graph. To our knowledge, this was first exploited
by Xu and colleagues in the definition of B-codes [26]. There,
they used a coloring of the graph encompassing both vertices
and edges and derived from a (graph-theoretical) factorization
of an enlarged graph to define an array code by collocating
data and parity information on a minimum number of disks.
We use the same tool here for a different means.

As an example, we use the two-dimensional layout in
Figure 1. Parity stripes are defined by the horizontal and
vertical lines and each contain three data disks and one parity
disk. A, B, . . . I are data disks and P1, . . ., P6 parity disks. Disk
B is located in the two reliability stripes with parity drives P1
and P5 respectively. It is the only disk that can belong to these
two stripes, and we give it the label (P1,P5) that characterizes
this disk. If we proceed, we get A corresponds to (P1,P4), B
to (P1,P5), C to (P1,P6), D to (P2,P4), E to (P2,P5), F to
(P2,P6), G to (P3,P4), H to (P3,P5), and I to (P3,P6). The
order within a label does not matter. The design of the disk
array is given by defining the reliability stripes. We can encode
the stripes now in the form of the graph on the left side of
Figure 1. In this graph, the vertices correspond to the parity
disks and the data disks to the edges. For instance, B has label
(P1,P5) and corresponds to the edge between vertices P1 and
P5. The reliability stripe with parity disk Pi is made up of
the data disks with a label that contains Pi. For example, the
reliability stripe with parity P5 contains B corresponding to
(P1,P5), E to (P2,P5), and H to (P3,P5). The move from disk
array layout to a graph representation is in fact a frequent tool
in combinatorical mathematics for block designs.

We observed in previous work that the two-failure tolerant
disk array with the least number of data disks given a certain
ratio of the number of parity disks over the number of data
disks is obtained by letting this graph be the complete graph Kn
with n disks. The n vertices of this graph are numbered from
0 to n� 1 and represent the parity disks and the n(n� 1)/2
edges are given by (0,1), (0,2), . . ., (0,n� 1), (1,2), (1,3),
. . . (n � 2,n � 1) and represent the data disks. Each stripe
consists of n�1 data disks. We then calculated the resilience
(mean time to data loss) of such an ensemble, which we
call the compact layout and found that it compared favorably
with that of an RAID Level 6 organization with an equal
amount of data and parity disks [22]. The primary motivation
to prefer the compact layout to the RAID Level 6 organization
is the simpler calculation of parity and during reconstruction
of failed disks. If there is a single failed disk, its contents are
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Fig. 2: Two representations of the same small, compact disk
array layout with six data and four parity disks. On the left,
the edges denote reliability stripes and the vertices all disks.
On the right, the vertices denote parity disks and the edges
data disks.

recovered by a single exclusive-or operation from the contents
of the other disk in one of the two reliability stripes containing
the failed disk and if there are several failed disks, each one
will be recovered by such an operation though in an order
restricted by the placement of the failed disks in the graph.
Often, we can recover completely in parallel.

Figure 2 gives an example of the compact layout. On the
left, the vertices denote all disks. Vertices A, B, C, D, E, and
F represent data disks and vertices 0, 1, 2, and 3 represent
parity disks. The edges represent membership in a reliability
stripe. The right of Figure 2 gives the corresponding graph
representation K4. Data disk E lies in the reliability stripes 1
and 2 and corresponds to the edge (1,2) between the vertices
1 and 2.

An observation by Zhou and colleagues characterizes min-
imal failure sets of disks as those containing either a cycle of
edges or a path where the end vertices have also failed [27].

B. Three-failure tolerant disk array layouts and graphs
We want to arrange data disks in three reliability stripes

providing triple-failure tolerance, but starting from a double-
failure resilient layout (hardening). We start with the complete
graph Kn and then organize all edges in groups of n�1 that
define additional reliability stripes that consists of n�1 data
disks and one additional parity disk. While there are many
ways of forming the n(n� 1)/2 edges in these groups, the
resulting layout in general will not provide three tolerance.
We provide here one layout where the groups are paths of
n� 1. We invoke a result of graph theory that is a variant
of Kirkman’s schoolgirl problem that stands at the beginning
of the theory of combinatorial designs in Mathematics [11].
Whereas Kirkman’s problem is posed as

Fifteen young ladies in a school walk out three abreast
for seven days in succession: it is required to arrange
them daily so that no two shall walk twice abreast.

the variant has dangerous prisoners walking in groups to
the prison yard several abreast, and each handcuffed to his
neighbor. In less gruesome terms, and after translating from
block designs to graphs, we divide the edges of the complete
graph Kn into n/2 paths of n� 1 edges each. As Hung and
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Fig. 3: Adding two reliability stripe to the disk array in Fig. 2.
The left side shows the factoring of K4 into two paths. The
result on the right shows the disk array with six data disks
and six parity disks. The “new” parity disks 4 and 5 are only
implicitly represented in the graph through the factoring.
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Fig. 4: Factoring K6 into three paths of five edges without the
Lawless construction. The graph corresponds to a disk array
with 15 data and 6 parity disks, to which the factoring adds
three new parity disks that are not visible in the graph layout.

Mendelsohn already showed in 1974, this is always possible
if n is even [9]. J. F. Lawless gave a general construction of
handcuffed designs using difference sets [12].

Figure 3 shows on the left the factoring of K4 into two paths
of length three using Lawless’ construction. We marked the
edges in the first factor in red and the ones in the second factor
in dashed green. The data disks represented by the edges in
each path are organized into two new reliability stripes, namely
A, D, F and E, B, C. Two new parity disks (4 and 5) are added
to the ensemble. These are not depicted in the graph layout
on the right of Figure 3, but their existence can be deduced
from the factoring.

We give another example of the resulting layout in Figure 4
where we used different strokes to assign all edges of the
complete graph K6 with 6 vertices to three different paths.
These paths represents three new reliability stripes. We con-
tinue to label data disks with the reliability stripes to which
they belong, so that disk (i, j) is the data disk that belongs to
the two reliability stripes with parity disks i and j. We recall
that in the compact layout, there is always such a data disk.
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Fig. 5: Factoring K8 into four paths of six edges with the
Lawless construction.

We then have the six reliability stripes defined by the graph.
They are

0,(0,1),(0,2),(0,3),(0,4),(0,5)
1,(0,1),(1,2),(1,3),(1,4),(1,5)
2,(0,2),(1,2),(2,3),(2,4),(2,5)
3,(0,3),(1,3),(2,3),(3,4),(3,5)
4,(0,4),(1,4),(2,4),(3,4),(4,5)
5,(0,5),(1,5),(2,5),(3,5),(4,5)

Obviously, each stripe corresponds to a vertex and the adjacent
edges to the vertex. In addition to these “old” reliability stripes,
there are three new ones defined by the three paths depicted
in Figure 4. The path given as a contiguous stroke starts at
vertex 0 and passes then through 1, 2, 3, 4 to terminate at
vertex 5. The first new reliability stripe therefore consists of
the data disks that lay in reliability stripes with parity disks
i and i+1, 0  i  5. The other two graph factors determine
the remaining two “new” reliability stripes. The result is

(0,1),(1,2),(2,3),(3,4),(4,5)
(1,3),(3,5),(0,5),(0,4),(2,4)
(1,4),(1,5),(2,5),(0,2),(0,3)

All 15 data disks (i, j) (0  i < j  5 have now been placed
into three additional reliability stripes. Vertex 0 corresponds
to the parity disk of the first “old” reliability stripe, Vertex 1
to the second “old” reliability stripe, etc. as becomes clear by
observing that this is the common label of all the data disks in
the stripe. The parity disks for the new stripes corresponding
to the path are not depicted in the graph.

For a slightly more complicated example, we turn to the
Lawless’ factorization of K8 in Figure 5. The “old” reliability
stripes consist of the data disks with a common component in

the label, thus we have the old reliability stripes

0 : (0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7)
1 : (0,1),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7)
2 : (0,2),(1,2),(2,3),(2,4),(2,5),(2,6),(2,7)
3 : (0,3),(1,3),(2,3),(3,4),(3,5),(3,6),(3,7)
4 : (0,4),(1,4),(2,4),(3,4),(4,5),(4,6),(4,7)
5 : (0,5),(1,5),(2,5),(3,5),(4,5),(5,6),(5,7)
6 : (0,6),(1,6),(2,6),(3,6),(4,6),(5,6),(6,7)
7 : (0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)

The new reliability stripe depicted as a dotted black line is

(0,1),(1,7),(2,7),(2,6),(3,6),(3,5),(4,5)

the red, blue, and yellow ones are

(1,2),(0,2),(0,3),(3,7),(4,7),(4,6),(5,6)
(2,3),(1,3),(1,4),(0,4),(0,5),(5,7),(6,7)
(3,4),(2,4),(2,5),(1,5),(1,6),(0,6),(0,7)

As before, the parity disks for the new stripes have no counter-
part in the graph visualization. The data disks in the red stripe
are obtained by adding one modulo 8 to the labels in the black
one and the data disks in the blue and yellow stripe by adding
two and three, respectively.

C. A general construction for K2m

In the special case of interest to us, the construction by
Lawless is extremely efficient [12]. It embeds the vertex
numbers into Zn, the integers modulo n = 2m, and uses a
simple difference set to define the paths. The first path is given
by the vertices

{0,0+1,0+1�2,0+1�2+3, . . . ,0+1�2+3 . . .+(n�1)},
i.e. has forward differences 1, �2, 3, . . . (n� 1). The data
disks therefore have labels (0,1), (1,�1 (mod n)), etc. The
remaining paths are given by adding an element of Zn to all
vertex numbers in the path. In the graph, the paths follow
a zig-zag pattern, that is then rotated m� 1 times to yield
m paths. We apply this construction in Figure 5, where we
use dotted lines to give the first path. The other paths are
obtained by adding 1, 2, and 3 to the vertex numbers in the first
path. We refer to these paths as the Lawless’ paths. Lawless’
construction has the advantage of being intrinsically symmetric
which simplifies arguments over failure tolerance.

For the determination of minimal failure patterns, it is useful
to notice the relationship between vertices on a Lawless’ path
that are at distance two of each other. Since the forward
difference between these vertex pairs are either �k+(k+ 1)
or k� (k+1), the difference in the vertex numbers is 1. Thus,
the vertex pairs lie on the “periphery” of the complete graph,
formed by the edges (i, i+ 1), i 2 Zn. Since there are n� 2
vertex pairs of distance two in a Lawless path and since there
are n edges in the periphery, these vertex pairs make up all
the edges in the periphery with the exception of two, namely
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III. MINIMAL FAILURE PATTERNS

In the following, we make free use of previous results [22]
in order to calculate the data loss probabilities exactly for up to
five failures. Every set of failed parity or data disks represents
a failure pattern in the graph. We call the reliability stripes
captured in the graph visualization old stripes and the ones
corresponding to the paths in the graph the new stripes and
correspondingly of old and new parity drives. Thus, only the
old parity drives are represented as vertices. If we assume that
all new parity drives have failed, then we can show that a
failure pattern has to contain a path (two failed vertices and a
path between them) or a cycle.

A. Minimal failure patterns of size 3 do not exist
We have two types of three-failure patterns in the compact

layout, namely the one-path and the triangle, see Figure 6. The
one-path corresponds to a failed data disks together with the
failed old parity disks in the two reliability stripes to which the
data disk belongs. We can recover the contents of the failed
data disks from the new stripe to which the data disk belongs
unless the corresponding new parity drive has also failed, but
then we have four failures. A three-cycle represents a set of
three failed data disks such that each two of the three lay in
an old reliability stripe. As the new stripes consists of paths,
at most two of the three edges (data disks) of the cycle can
be in a single new reliability stripe. Therefore, we can recover
first the contents of at least one of the three failed data disks
and then the contents of the other two failed data drive. The
new (hardened) data layout is therefore three-failure tolerant.

B. Minimal failure patterns of size 4
The design without new reliability stripes has two types of

minimal four-failure patterns, namely the two-path consisting
of a failed (old) parity disk, an adjoining data disk, a data
disk adjoining to this data disk and the adjoined (old) parity
disk, and a quadrangle, consisting of four failed data disks
(Figure 6). We can recover the data in a failed two-path if the
two edges (data disks) are in two different new stripes, but
not, if they are in the same new stripe. To count this pattern,
we need to count the number of ways in which we can select
two adjacent edges in a new stripe, since every such patterns

Fig. 7: Two types of minimal four-failure patterns for quad-
rangles.

TABLE I: Number of quadrangles of type 2.
n Fl. n Fl. n Fl. n Fl. n Fl.
6 3 26 78 46 253 66 528 86 903
8 14 28 259 48 804 68 1649 88 2794

10 10 30 105 50 300 70 595 90 990
12 39 32 344 52 949 72 1854 92 3059
14 21 34 136 54 351 74 666 94 1081
16 76 36 441 56 1106 76 2071 96 3336
18 36 38 171 58 406 78 741 98 1176
20 125 40 550 60 1275 80 2300 100 3625
22 55 42 210 62 465 82 820
24 186 44 671 64 1456 84 2541

forms a failure pattern. Since the new stripes are formed by
a path with n� 1 edges, there are n� 3 subpaths of length
2. As there are n/2 new stripes, we obtain (n�2)n/2 failure
patterns of this type.

A quadrangle cannot be reconstructed using the new re-
liability stripes if and only if every edge in the quadrangle
lies in the same new stripe as another edge. This gives us two
types of four-failure patterns based on quadrangles, depending
on whether opposing or adjacent edges belong to the same
Lawless’ paths (Figure 7).

We can count the quadrangles of the latter type by using the
subpaths of the Lawless’ paths of length 2, which corresponds
to pairs of vertices at distance two in the path. We select one
such subpath from one Lawless’ path and then another one
from another one. As we have seen, these subpaths form two
thirds of a triangle with the other edge being an edge on the
periphery. For example, the Lawless’ path in K8 starting at 3
has a subpath of length 2 of (4,2),(2,5) forming a triangle
2,4,5 and the other edge is edge (4,5) on the periphery. If we
select two Lawless’ paths, then in order to form a quadrangle
of subpaths of length two of these, we just select one such
peripheral edge. For example, if in addition to the Lawless’
path from 3 to 7 we pick the Lawless path from 1 to 5 in K8,
then 4 and 5 are also the endpoints of a subpath (4,6),(6,5) on
that path. This gives us a quadrangle with vertices [4,6,5,2] (in
that order). Given two Lawless’ paths, they each have n� 2
of the n peripheral edges and they have n� 4 in common.
Therefore, we count by selection two of the n/2 Lawless paths,
and then a common peripheral edge to obtain a total of these
type of quadrangles of

(n�4)
✓ n

2
2

◆

We were not able to derive a closed-form formula for the
number of quadrangles of the second type, where the two
edges belonging to the same Lawless’ path are in parallel and
not adjoint. However, we could easily write a Python program
to evaluate all graphs for n even between 6 and 100. The result



TABLE II: Number of pentagons with edges in two Lawless’
path.

n Fl. n Fl. n Fl. n Fl. n Fl.
6 24 22 792 38 2584 54 5400 70 9240
8 56 24 936 40 2840 56 5768 72 9720

10 120 26 1144 42 3192 58 6264 74 10360
12 180 28 1316 44 3476 60 6660 76 10868
14 280 30 1560 46 3864 62 7192 78 11544
16 368 32 1760 48 4176 64 7616
18 504 34 2040 50 4600 66 8184
20 620 36 2268 52 4940 68 8636

(Table I shows a strong dependence on the remainder class of
n modulo 4.

Finally, we can have a three minimal failure pattern in the
old design with the additional failure of one new parity disk.
The one-path has only one data disk and if that data disk
belongs to a new stripe where the parity disk has failed, then
data reconstruction is impossible using the old or the new
parity information. There are

�n
2
�

of these one-paths, each
constituting a different minimal four-failure pattern.

The other possibility is the triangle. In order for the data
on the three mutually interconnected data disks to be not
reconstructible, we need two of them to be in a new reliability
stripe (which then has lost two of its members) and one in
a new reliability stripe where the new parity disk also has
failed. We recall that a Lawless’ path cannot contain a cycle,
so that this is the only possibility. Now, this pattern is uniquely
determined by the two data disks in the same new reliability
stripe, which have to be connected. They represent therefore
a subpath of length 2 in a Lawless’ path of length n� 1, of
which there are n�2 per Lawless path for a total of n

2 (n�2).

C. Minimal failure patterns of size 5

There are two minimal failure patterns of size 5 in the
compact layout without the new reliability stripes. These are
the pentagons and the two path. The other failure patterns of
size 5 are constituted by a failure of a new parity disk and
a minimal four-failure pattern in the old array, or a failure of
two new parity disks and a minimal three failure pattern.

We first consider the pentagon. It consists of five data disks
such that any two intersect in an old reliability stripe. With
the new stripes, reconstruction is impossible if neither one of
the failed data disks lie in a Lawless’ path. Since a Lawless’
path does not include cycles, this gives us a situation where
two of the failed data disks lie in one and three of the failed
lie in another Lawless’ path. It was beyond our Mathematical
capabilities to derive a closed form formula and so we used a
Python program to count them (Table II).

We now consider the three-path. It consists of three data
disks D1, D2, and D3 such that D1 and D2 as well as D2 and
D3 intersect each in a different, old reliability stripe and that
the other old parity stripe of D1 and of D3 has suffered failure.
In order to not be able to reconstruct the data on the data disks,
each needs to be collocated with at least one more of the failed
data disks in a new reliability stripe. Since there are only three
of them, they need to be in the same Lawless’ path. Since they
also form a path of length three and a Lawless’ path has length

n�1, there are n�3 of them per Lawless’ path for a total of
n
2 (n�3).

We now consider the minimal four failures with the old
reliability stripes in conjunction with the failure of the parity
disk in a new stripe. The two-path contains two failed data
disks. As we have seen, they cannot be recovered if both of
them are in the same new reliability stripe. If this is not the
case, then they belong to two different new stripes. Since only
one of these new stripes can have lost the parity disk, we can
use the other to reconstruct the data and then we no longer
have a failure pattern. Thus, this pattern does not give rise to
a new minimal failure pattern.

Next, we have the quadrangle, consisting of four data disks
D1, D2, D3, D4 such that D1 and D2, D2 and D3, D3 and D4,
and D4 and D1 each intersect in a separate old reliability stripe.
As we have seen, if two of the data disks belong to the same
new reliability stripe and the two other ones to another new
reliability stripe, then they constitute a minimal four-failure
pattern. Since with the additional failure of the parity disk
of a new reliability stripe, still the contents of the lost four
data disks have to remain not reconstructable, we only gain
one more pattern, where we have three data disks in one new
reliability stripe and the other data disk in another one, and
where the parity drive of the latter has also failed. In the graph
visualization, the quadrangle then has three sides in the same
Lawless’ path and the other one in a different path. Since any
subpath of length three in a Lawless path has the end vertices
connected by necessity with an edge in a different Lawless
path, the number of these patterns is equal to set of three
paths in a Lawless path, of which there are n

2 (n�3).
Finally, we consider minimal three failure patterns in the old

design with two new parity disks also having failed. For the
triangle, we can have all three data disks belong to different
new reliability stripes, but in this case, at least one of the new
reliability stripes has the parity intact and the data on the lost
disk in it can be recovered. Therefore, at least two data disks
need to belong to the same new parity stripe, and the other
one needs to lie in a new reliability with failed parity disk,
which is a pattern already counted as a minimal four-failure
pattern.

If we have the one-path, then there is only one data disk, so
that the failure of the parity of a new stripe in addition to that
of the stripe, to which the data disk belongs, does not make a
difference. Hence, these neither constitute minimal five-failure
patterns.

D. Five failure patterns
Whereas all four failure patterns are minimal, some five

failure patterns consist of a (by necessity) minimal four-failure
pattern and an arbitrary failure. When accounting for these
patterns, one also has to take double and triple counts into
account as happens when two minimal four-failure patterns
with a different additional, failed disk makes up the same
five failure pattern. The closest we come is the triangle with
one and two path (Figure 6), which in the layout without
the new reliability stripes would be counted as a triangle, a



one-path, and a two-path. However, the triangle pattern is a
failure pattern only if two of the data disks (edges) belong to
a new stripe and the other edge to a new stripe with failed
parity drive. This means six and not five failed disks. We can
conclude after inspecting all other combinations of minimal
four failure patterns that there are no patterns that are over-
counted.

Therefore, a five failure pattern consists either of a minimal
five failure pattern or of a minimal four failure pattern with one
additional, but arbitrary disk failure. Since there are n(n+2)/2
disks in total, there are n(n+2)/2 possibilities to choose the
additional disk to make up the pattern.

IV. COMPARISONS

A. RAID Level 6 organization with three parity disks per stripe

We compare against a RAID Level 6 organization that is
three-failure tolerant. This organization consists of n reliability
stripes with k data and three parity disks. The total number of
disks is n(k+3) and of data disks is nk. A failure pattern for
this organization has lead to dataloss if there are four or more
disks in a stripe that have failed. To obtain a formula for the
number of patterns with f failed disks where there is dataloss,
we determine the number of patterns without dataloss. If there
are then a1 stripes with one failed disk, a2 stripes with two
failed disks, a3 with three failed disks and n� a1 � a2 � a3
stripes without failed disk, then we count

� n(k+3)
f�a1�a2�a3,a1,a2,a3

��k+3
1
�a1�k+3

2
�a2�k+3

3
�a3

failure patterns. The number of failed disks in this pattern is
a1 +2a2 +3a3 = f . By summing up over all possibilities, this
gives us an effective way of calculating the number of failure
pattern that do not lead to dataloss:

Â
a1+2a2+3a3= f

� n(k+3)
f�a1�a2�a3,a1,a2,a3

��k+3
1
�a1�k+3

2
�a2�k+3

3
�a3

B. Robustness evaluation

For the reliability evaluation, we used simulation to obtain
the survival probabilities for the data in a disk array organi-
zations in the presence of f failures. We present the results in
Figures 8 and 9. We divided the simulations into 20 batches
of 200000 simulations each in order to obtain 99% confidence
intervals. The resulting intervals are at worst at 0.2 per mil of
the obtained probabilities, too small for visible error bars in
Figures 8 and 9.

As can be seen, data loss is guaranteed with the same
number of failures for both types of organizations. Since both
RAID Level 6 and the (hardened or not hardened) compact
layout guarantee no data loss with three or two failures, the
important results are for numbers f of failures between these
two values. We can observe that the hardened or not hardened
compact layout always has a lesser probability of data loss
than the RAID Level 6 organization. We also observe that the
hardened versions show very good data survival probabilities
for small numbers of failures.

C. Evaluation with Markov models

We give the standard Markov model for a disk array layout
in Figure 10. The state of the system is given by the number
of failed disks in the system. The model is parametrized by
the failure rate l (assumed to be constant) and the repair rate
r also assumed to be constant. The transitions represents disk
failure and disk repair. A failure transition goes from State k
(with k failed disks) to State k+1 with transition rate p[k](N�
k)l where p[k] is the probability that the failure of the k+
1st disk does not lead to dataloss, or goes from State k to
State F (the absorbing state representing failure) with rate (1�
p[k])(N � k)l . The repair transitions are from State k+ 1 to
State k with rate (k+1)r .

If an organization suffers dataloss with probability a after
failure of k disks and with probability b > a after failure of
k+1 disks, then the probability that the system is alive after
k + 1 failures is equal to 1 � b, but also to the probability
that no dataloss is caused by the (k+1)st failure if none was
caused by the kth one, which is p[k](1�a). Therefore, p[k] =
(1�b)/(1�a).

For the RAID Level 6 organization, Section IV.A gives the
exact values of p[i]. For the graph layout, we obtained p[3],
p[4], and p[5] exactly in Section IV. The exactness of the
remaining values for p[i] are less important, and we determined
them by simulation as reported in the previous sections. We
then used this Markov model to calculate the one-year survival
probability of the data in a disk array using an average repair
time of 36 hours and varied the mean time to failure of disks.
While the model is not completely accurate, for example,
repair times are definitely not exponentially distributed, and
while we neglect the effect of latent sector errors, whose
consideration would make the article too long, we consider
this modeling accurate enough for comparisons between the
various designs.

We give the results in Figure 11, where we measure the
one-year reliability of the array in terms of nines. A survival
rate of 99.9% corresponds to three nines and one of 99.999%
to five nines. Of course, these numbers do not include other
causes of failures such as operator error or fire. The numbers
shows clearly that the addition of a third reliability stripe in
which a data disk is placed, more than compensates the effects
of doubling the disk failure rate. For examples, we provide
Tables III and IV. An annual failure rate of 5% corresponds
to a mean time to failure of 166,688 hours. At this rate, the
complete layout with 10 parity disks and 45 data disks has
an annual data loss probability (with mean repair times of
36 hours) of 6.29⇥ 10�7. If however the disk mean time to
failure turns out to be only 50,000 hours, than the annual
data loss probability increases to 2.34⇥10�5 (Table III). The
layout with 5 additional parity disks however has an annual
loss rate of 4.89⇥10�8, which is actually better than that for
the double-failure tolerant array. If we move to a larger layout
with 120 data disks and 16 parity disks, with disks at a mean
time to failure of 166,688 hours, the one year data loss rate
is 2.06⇥10�5. If we have disks with one tenth of this failure
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Fig. 8: Probability p of data survival (y-axis) in the presence of f failed disks (x-axis). The left graph gives the numbers for
the triple failure resilient graph layout based on K10 (top) and for a RAID Level 6 layout with 5 stripes of 9 data disks and 3
parity disks. The right graph depicts the results for the two failure-tolerant base cases.
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Fig. 9: Probability p of data survival (y-axis) in the presence of f failed disks (x-axis). The left graph gives the numbers for
the triple failure resilient graph layout based on K16 (top) and for a RAID Level 6 layout with 8 stripes of 15 data disks and
3 parity disks. The right graph depicts the results for the two failure-tolerant base cases.
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Fig. 10: Markov model for a three-failure tolerant disk array layout.

rate, the data loss rate increases to 1.83⇥10�2. However, the
hardened array with the same mean time to failure of 16,669
hours has a one year data loss rate of 1.52 ⇥ 10�5, which
is even a bit less than the one for the original rate with the
original storage array. Perusing Tables III and IV shows that
this observation holds for the range of values.

V. RELATED WORK

The default storage policy for cloud file systems is tripli-
cation, as for example in the Google File System or Hadoop
File System [4], [24]. For Windows Azure Storage, erasure

coding is now considered as an replacement for triplication;
the proposed linear reconstruction code provides triple failure
tolerance, but sacrifices being MDS in order to read from less
drives for most recovery operations [7].

Block codes offering three failure tolerance are not new.
Generalized Reed-Solomon codes are triple-failure tolerant
MDS codes, but involve Galois field calculations in their
construction. Feng and colleagues present a family of more
efficient triple-failure tolerant MDS codes as does Huang and
Xu [3], [8]. Current research is now interested in improving
the efficiency of such codes during recovery [10]. Wang
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Fig. 11: Comparison of the probabilities for one year survival of all data. The resulting probability is given in number of nines.
The x-axis gives the average mean time to failure of a disk.

TABLE III: One year failure probability for the double- and
tripe-failure tolerant layouts based on the complete graph K10
and the RAID VI with 5 stripes with 9 data disks and two or
three parity disks.

MTtF 2-failure tlr. 3-failure tlr. 2-failure tlr. 3-failure tlr.
Graph RAID VI

10000 2.95⇥10�3 3.04⇥10�5 1.41⇥10�2 3.77⇥10�4

20000 3.66⇥10�4 1.91⇥10�6 1.81⇥10�3 2.41⇥10�5

30000 1.08⇥10�4 3.77⇥10�7 5.41⇥10�4 4.80⇥10�6

40000 4.57⇥10�5 1.19⇥10�7 2.29⇥10�4 1.52⇥10�6

50000 2.34⇥10�5 4.89⇥10�8 1.17⇥10�4 6.26⇥10�7

60000 1.35⇥10�5 2.36⇥10�8 6.81⇥10�5 3.02⇥10�7

70000 8.50⇥10�6 1.27⇥10�8 4.29⇥10�5 1.63⇥10�7

80000 5.70⇥10�6 7.46⇥10�9 2.88⇥10�5 9.58⇥10�8

90000 4.00⇥10�6 4.66⇥10�9 2.02⇥10�5 5.99⇥10�8

100000 2.92⇥10�6 3.06⇥10�9 1.47⇥10�5 3.93⇥10�8

200000 3.64⇥10�7 1.92⇥10�10 1.85⇥10�6 2.46⇥10�9

300000 1.08⇥10�7 3.89⇥10�11 5.47⇥10�7 4.87⇥10�10

400000 4.55⇥10�8 1.19⇥10�11 2.31⇥10�7 1.54⇥10�10

500000 2.33⇥10�8 5.75⇥10�12 1.18⇥10�7 6.40⇥10�11

600000 1.35⇥10�8 3.50⇥10�12 6.84⇥10�8 3.16⇥10�11

700000 8.48⇥10�9 3.17⇥10�12 4.31⇥10�8 1.84⇥10�11

800000 5.68⇥10�9 1.06⇥10�12 2.89⇥10�8 9.89⇥10�12

900000 3.99⇥10�9 1.22⇥10�12 2.03⇥10�8 6.75⇥10�12

1000000 2.91⇥10�9 5.73⇥10�14 1.48⇥10�8 3.67⇥10�12

and colleagues use combinatorial techniques (including graph
factorizations, but of a different kind than we use) to define
t-erasure correcting MDS codes with a good choice of code-
parameters [25].

Greenan et al. introduced the notion of flat XOR codes to
describe the type of code that we presented here, where data
disks are stored in various reliability stripes with a single parity
disk that contains the exclusive-or of the data disks in the
stripe [5], [6]. They describe various constructions for these
codes with the help of Tanner codes [23]. They also calculate
minimal erasure lists, an enumeration of what we call minimal
failure patterns, and the minimal erasure vector, which encodes
the dataloss probability given a certain number of failures. The
focus of this work is finding good codes for small arrays. For
very large sizes of the code work, Low Density Parity Check
(LDPC) or Gallager codes [13] have been shown to possess
excellent encode and decode costs for data over lossy channels

TABLE IV: One year failure probability for the double- and
tripe-failure tolerant layouts based on the complete graph K16
and the RAID VI with 8 stripes with 15 data disks and two
or three parity disks.

MTtF 2-failure tlr. 3-failure tlr. 2-failure tlr. 3-failure tlr.
Graph RAID VI

10000 7.63⇥10�2 1.17⇥10�4 3.94⇥10�1 3.62⇥10�3

20000 1.08⇥10�2 7.32⇥10�6 6.94⇥10�2 2.34⇥10�4

30000 3.33⇥10�3 1.44⇥10�6 2.21⇥10�2 4.68⇥10�5

40000 1.43⇥10�3 4.57⇥10�7 9.62⇥10�3 1.49⇥10�5

50000 7.41⇥10�4 1.87⇥10�7 5.01⇥10�3 6.11⇥10�6

60000 4.32⇥10�4 9.03⇥10�8 2.93⇥10�3 2.95⇥10�6

70000 2.74⇥10�4 4.87⇥10�8 1.86⇥10�3 1.6⇥10�6

80000 1.84⇥10�4 2.86⇥10�8 1.25⇥10�3 9.37⇥10�7

90000 1.3⇥10�4 1.78⇥10�8 8.83⇥10�4 5.86⇥10�7

100000 9.47⇥10�5 1.17⇥10�8 6.46⇥10�4 3.85⇥10�7

200000 1.2⇥10�5 7.3⇥10�10 8.2⇥10�5 2.41⇥10�8

300000 3.56⇥10�6 1.44⇥10�10 2.44⇥10�5 4.77⇥10�9

400000 1.5⇥10�6 4.56⇥10�11 1.03⇥10�5 1.51⇥10�9

500000 7.71⇥10�7 2.06⇥10�11 5.29⇥10�6 6.2⇥10�10

600000 4.47⇥10�7 8.76⇥10�12 3.07⇥10�6 2.98⇥10�10

700000 2.81⇥10�7 5.04⇥10�12 1.93⇥10�6 1.61⇥10�10

800000 1.89⇥10�7 3.31⇥10�12 1.3⇥10�6 9.48⇥10�11

900000 1.32⇥10�7 1.83⇥10�12 9.1⇥10�7 5.9⇥10�11

1000000 9.66⇥10�8 3.⇥10�13 6.64⇥10�7 3.78⇥10�11

at the cost of sacrificing a small amount of space-efficiency,
which is the reason that they have been adapted in several
standards such as for the WiFi 802.11n and 802.11ac standard
and 10GBase-T ethernet. They are defined by a sparse parity
check matrix, as is the case for the types of codes considered
in this paper. Plank’s work bridges the gap between the large
sizes needed for network encoding and the smaller codes
appropriate for disk array design [18]. Pâris et al. investigate
the reliability of three-dimensional RAID arrays that provide
three-failure tolerance [15].

In previous work, we proposed to equip a fairly conventional
two-dimensional RAID architecture, where each disk belongs
to exactly one horizontal and one vertical RAID Level 4 stripe,
with a super-parity containing the parity of all parity disks to
obtain a three-failure tolerant array with a reliability that com-
pares favorably to an equivalent set of RAID Level 6 stripes
[16]. We also proposed to protect against early disk failure by



using free space in a disk array for parity information until the
disks are burnt in [17]. We first investigated hardening a disk
array in the case of the two-dimensional disk array, where we
mirror the parity in one dimension on need [14].

VI. CONCLUSION

We presented here a layout for a tripe-failure tolerant
disk array design that uses a single exclusive-or operation to
calculate a parity and equally a single exclusive-or operation
to reconstruct the data on a failed drive. The layout can be
obtained by adding reliability stripes to a disk array design
with the same operational properties, but with only tolerance
for double failures. One mode of use for the new design is to
harden the compact layout with two-failure tolerance to obtain
one with three-failure tolerance. We have shown that hardening
tolerates an unexpected decrease in the mean time to failure
of a disk array by about a factor of 10. We also showed that
the design is substantially more resilient to data loss from disk
failures than a RAID Level 6 design with the same number
of parity disks and the same size of reliability stripes. In our
eyes, this makes this design attractive as the base of organizing
disk arrays in a large, archival storage system with thousands
of disks, in spite of lacking the flexibility that a RAID Level
6 offers for changing the number of disks by small amounts.

As future work, we want to consider two extensions. First,
the compact layout is not the only two failure-tolerant layout
based on a flat XOR code, even though it is attractive because
of its density. Second, current work in disk array layout is
interested in lowering the I/O costs of typical reconstructions.
In fact, our triple-failure tolerant layout can fall in line by
halving the size of the new reliability stripes. Another promis-
ing line of constructions starts with (r,s)-regular graphs where
one subset of vertices has degree r and its complement degree
s. The techniques used in this paper, extensive simulation
to determine failure tolerance given f failures together with
Markov modeling for reliability determination allow the study
of these layouts.
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