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Abstract 
We propose that the challenges in the design and implementation of an SDDS can be 
significantly eased by separating the design of the scalable high-availability part 
(HADRAM) from the design of the SDDS proper.  We have designed and partially 
implemented a HADRAM system that allows measurement to prove the validity of the 
concept.  All other highly available SDDS provide failure tolerance at the record level, 
whereas HADRAM provides it at the memory level.  This should speed up design of 
highly available SDDS. 

1 Introduction 
With the advent of high-speed, high bandwidth computer networks, clusters of computers, also known 

as multicomputers, have emerged as a technology with excellent performance / cost ratio.  These systems 
need new data structures that have performance independent of the number of nodes in the multicomputer.  
A number of Scalable Distributed Data Structures (SDDS) was developed, most prominently LH* and RP* 
that use the collective RAM (or sometimes disk storage) of the nodes to provide seemingly unlimited 
storage at attractive speeds.  As the number of nodes increases, availability and reliability of nodes emerges 
as a new problem.  If for example a system uses 100 nodes each available at the five nines level (up 
99.999% of time), then the combined system is only available at the three nines level (99.9%).  In response, 
failure tolerant (or to be more precise: unavailability tolerant) SDDS were developed such as LH*g, LH*m, 
LH*RS.  The latter even implements scalable availability, that is, the level of protection of data against node 
unavailability grows with the number of nodes to achieve a high system-wide availability of all the data. 
We propose here Highly Available Distributed Random Access Memory (HADRAM) as a layer that 
provides scalable available data storage in the combined RAM of the multicomputer, on which arbitrary 
SDDS structures can be build.  In a manner of speaking, what Boxwood [M&al05] proposes for distributed 
disk storage, we propose for SDDS. 

2 Scalable Distributed Data Structures 
An SDDS stored data in the distributed RAM of the nodes of a multicomputer while offering access to 

these data in constant time independent of the number of nodes over which the data is spread.  For this 
reason, they cannot have a central look-up scheme, which would turn into a bottleneck if the system grows 
too much.  However, it is possible to have a central coordinator, as long as the coordinator is only rarely 
invoked. When the SDDS file (the collection of the data administered by the SDDS changes size) then data 
is moved to new nodes or data is evacuated from some nodes and moved to others.  A good SDDS design 
will only move data sparingly so that data can be found quickly.  For this reason, clients usually do not 
have an accurate picture of where data is, but the SDDS have a mechanism that allows updating the client’s 
picture so that the same mistake is not made twice. 

Most SDDS implement a simple interface to any application that uses them.  They tend to store data 
in records, indexed by a key, and provide access (insert, delete, update, read) by key as well as parallel 
search.  An SDDS is implemented as a middleware (Figure 1).  Clients run an application which shares an 
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SDDS file.  The clients access the files by sending their requests to the local SDDS client, which then uses 
the SDDS protocol to forward the request eventually (but usually directly) to the correct SDDS server 
running on one node of the multicomputer.  The SDDS server itself stores the data in an SDDS bucket.  It is 
possible that SDDS clients and SDDS servers reside on the same node, and that SDDS servers administer 
more than a single SDDS bucket.  The designer / implementer of an SDDS thus has a complicated design 
that includes the design of the client interface, the design of the SDDS including the addressing algorithm, 
the movement of data when the SDDS file grows or shrinks, the update of the local image of the state of the 
SDDS at the client, etc, the design of the communication between clients and servers, and the design of the 
SDDS bucket. When adding the requirement of high availability, especially scalable availability, then the 
challenges are indeed great.   

 

 

client client client 
   

SDDS Client SDDS Client SDDS Client

  Figure 1: SDDS as Middleware 

3 Related Work 
High-speed, high-capacity networks (including the Internet) enable cluster computing. To be 

successful, multicomputer need to provide service properties that include the ability to scale to large, 
rapidly growing user populations, high availability in the face of partial failures, consistency maintenance 
of users' data, and operational manageability. In response to these needs, Distributed Scalable Data 
Structures (SDDS) were proposed in 1993, [LNS93], SDDSs gave rise to important research effort, 
materialized by several algorithms, papers and implementations. It was shown that SDDS files are able to 
scale to thousands of sites, and terabytes in distributed RAM, with constant access performance, and search 
times under a millisecond. Multi-key searches requiring an hour or so in a traditional file, e.g., a k-d file, 
may succeed in less than a second in an SDDS file [LN95], [L96]. All these properties are of prime 
importance especially in the DBMS design arena, [ASS94]. Some SDDS are: 
SDDSs for hashed files. These extend the more traditional dynamic hash data structures, especially linear 
hashing, [L80], [SPW90] and dynamic hashing [L88], to multicomputers [D93], [KLR96], [LNS93], 
[LN96], [VBWY94]. The basic algorithm for such SDDSs is LH* has found recognition in the computer 
literature [K98], [R98].  
SDDSs for ordered files. These extend the traditional ordered data structures, B-trees or binary trees, to 
multicomputers, [LNS94], [KW94].  
SDDSs for multi-attribute (multi-key) files. These algorithms extend the traditional k-d data structures 
[S89] to multicomputers, [LN95], [N95], [L96]. Performance of multi-attribute search can improve by 
several orders of magnitude.  
High-availability SDDSs. These structures are designed to transparently survive failures of server sites. 
They typically apply principles of mirroring, or of striping, or of grouping of records, revised to support the 
file scalability [LN95], [LN96], [LR97], [LMR98][LMS05]. 
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There are several implementations of the SDDS structures. An interesting implementation of high-
availability variant of LH* implemented in Java is presented in [L98]. Finally, [R98] discusses an 
application of another variant of LH* to telecommunication databases. 

The Boxwood project [M&al05] at MS Research explored the feasibility and utility of providing high-
level abstractions or data structures as the fundamental storage infrastructure fulfilling basic requirements 
such as redundancy and backup to tolerate failures, expansion mechanisms for load and capacity balancing, 
and consistency maintenance in the presence of failures. Boxwood targets a multicomputer with locally 
attached storage. Each node runs the Boxwood software components to implement abstractions and other 
services on the disks attached to the system.  Failure tolerance results from using chained-declustered 
replication [HD90].  We make Boxwood’s central thesis our own and apply it to primarily RAM based 
SDDS.   

4 Highly Available Distributed RAM (HADRAM) 
Storing data in RAM is fast, even over a network, but also expensive.  As we need to store data 

redundantly in order to recover from node failure or node unavailability, we therefore need to use the less 
storage intensive redundancy offered by erasure correcting codes.  There are a large number of erasure 
correcting codes available and their properties are well documented.  In our scheme, we place m buckets on 
m different nodes in a reliability group and add to these m data buckets k additional buckets – the parity 
buckets – containing parity data calculated from the m data buckets.  This is the same redundancy 
mechanism as in LH*RS (provided we use a generalized Reed-Solomon code), but in contrast, HADRAM 
treats buckets as a big, flat chunks of main memory without any internal organization.  

 

 
Figure 2: HADRAM – SDDS Server Layers at a Node. 

HADRAM is designed to be the highly available memory layer of an SDDS.  It provides memory 
allocation and de-allocation as well as failure tolerance and simultaneous atomic writes. The SDDS server 
stores its data in a bucket on HADRAM provided memory.  The bucket can be organized in any way the 
SDDS designer chooses, a Linear Hash file, a B+-tree or a link tree, etc. (In the spirit of modularization, the 
design of the SDDS bucket can be “off-the-shelf”.) When the bucket operation demands more memory, it 
requests it from the HADRAM layer through a malloc-like call, when the memory is no longer needed, 
then it frees it by a call to the HADRAM layer that operates like the “free”-operation.  The SDDS server 
can request an adjustment of the availability provided by the HADRAM layer.   

To detect unavailable buckets, the n = m + k buckets in a HADRAM reliability group monitor each 
other.  If they detect node unavailability, they collectively react to it. The central part of the reaction is to 
rebuild the lost data on another node in the SDDS.  If a parity bucket is lost, then rebuilding it is all that 
needs to be done and the occurrence is transparent to the SDDS layer. In order to find a place for the 
replacement bucket, HADRAM can contact a HADRAM coordinator or can use a broadcast message.  If a 
data bucket is lost, then the SDDS layer needs to be involved since requests need to be redirected from the 
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unavailable to the new data bucket.   We summarize the interaction between the SDDS and the HADRAM 
layer in Figure 2. The bulk of the SDDS Server – HADRAM interaction are memory interactions such as 
allocate HADRAM memory, free HADRAM memory, read HADRAM memory, and write HADRAM 
memory.  These need very little explanation besides the HADRAM design that supports them (Section 5).  
Note however that an operation such as a record insert changes many different memory locations. For 
example, if we insert in to a LH bucket implemented according to Ellis [E87] and the insert results in an 
LH bucket split, then we reset quite a number of pointers and possibly deallocate and allocate memory. For 
performance reasons, these changes should be processed by the HADRAM system in a single, atomic step; 
since changes in a HADRAM bucket need to be processed at all k parity buckets and involve at least one 
network round-trip.  Because the SDDS server stores data in a local HADRAM data bucket, all reads 
become local and only writes incur network delays. 

The high-availability interactions impose changes in the design of the SDDS server, which we now 
describe.  If an SDDS file grows or shrinks, it needs to adjust the degree of availability of individual 
buckets. HADRAM can increase the availability by adding a parity bucket and decrease it by releasing a 
bucket.  It can also change it by combining two HADRAM reliability groups ((m + k) + (m + k) → (2m + 
k)) or splitting them.  However, this also changes the performance of writes, which need to percolate to all 
parity buckets, which in turn see an increase or a decrease in write requests. In addition, it involves the 
SDDS layer in locating a group to merge with.  The SDDS can communicate its need for a change in 
reliability by giving a command to HADRAM.  

The HADRAM layer needs to allocate replacement buckets in case of unavailability.  In addition, if 
the SDDS creates a new data bucket, it needs to either find a slot in an existing HADRAM reliability group 
or create a new one.  Depending on the needs of the SDDS, we might have to provide these services 
through a central HADRAM coordinator. 

5 HADRAM Design 
As we have seen, HADRAM implements redundant, distributed storage in the main memory of a 

cluster of commodity computers. We implemented its basic interchange with the SDDS bucket and in 
particular investigated a messaging architecture that provides transactional updates even in the presence of 
(limited) message loss. 

5.1 HADRAM Reliability 
Internally, HADRAM data buckets are placed in reliability groups to which parity buckets are added.  

The size of the data buckets is quite large, so that reconstruction of unavailable buckets is done in bulk.  In 
order to provide transactional updates to the local SDDS bucket, HADRAM allows many writes to be 
grouped in a single transaction, even in the presence of failures. Bundling not only speeds up 
communications, but also simplifies the memory interface design.  A write request to the HADRAM layer 
is simply a list of offsets within the HADRAM bucket and a list of modifications.  HADRAM guarantees 
that all the modifications are performed simultaneously and atomically.  It provides two types of 
acknowledgements, a first one that the request was received by the HADRAM layer and a second one that 
the request was performed and is permanent in the sense that it survives failures and unavailabilities (within 
the limits of our recovery capacity, i.e. not more than k unavailabilities within a reliability group).  

HADRAM itself is responsible for failure/unavailability detection and repair. Operationally, it detects 
the failure of parity buckets when they do not respond to an update request.  In addition, parity buckets 
monitor the data buckets through “heartbeat monitoring”.  In case an unavailable bucket is detected, the 
HADRAM buckets in a reliability group act in conjunction.  We can use a distributed consensus protocol 
such as Paxos [GM02] or simply a leader election algorithm, though the latter can run into difficulties if 
messages can be severely delayed.   The group (or the leader) first decides which buckets are available and 
which are unavailable.  It then determines which buckets need to be reconstructed and finds locations for 
the new buckets.  It also determines which (typically) m are implied in the reconstruction.  The 
reconstruction itself depends on the erasure correcting code.  We use a generalized Reed-Solomon code as 
in [LMS05].  Accordingly, the group leader first inverts an m by m matrix formed from the code’s 
generator matrix.  For each bucket to be reconstructed, the process needs to calculate the XOR of the 
Galois field product of a symbol from each of the reconstructing buckets as a symbol of the reconstructed 
bucket.  As an improvement over LH*RS, we use extensive, and if necessary staggered table look-up to 



construct the products.  In consequence, the leader first calculates the tables and ships them to the sites 
about to store the reconstructed bucket.  All buckets involved in reconstruction then send their contents (in 
large slices, as in [LMS05]) to the sites which recalculate the bucket.  

5.2 HADRAM Messaging Architecture: Transactions Even in the 
Presence of Failures 

In HADRAM every modification of a block is an update and needs to be performed at the data bucket 
and at all the parity buckets for sure. In [LMS05], the well-known 1-Phase-Commit (1PC) [S79, BG83, 
CS84] was implemented, but unfortunately, if messages can get lost then 1PC does not guarantee that a 
once acknowledged update cannot be inadvertently rolled by a bucket failure and following reconstruction.  
Litwin et al. propose two variants of 2-Phase-Commit that trade off transactional behavior even in the 
presence of failures for speed.  We found that another protocol, called high-watermark, maintains the 
transactional quality while offering much better performance.  In this protocol, we maintain all updates in a 
log.  We purge entries from the log by applying the update to the contents of the bucket.  This happens only 
if the site knows that all other sites have the update in their log.  They gain their knowledge through a series 
of status update messages that in part are piggy-backed on other messages.  In more detail, all updates are 
identified by the data bucket from which they come and a message number.  A data site maintains the status 
of all parity buckets and a parity bucket maintains the status of all buckets.  They exchange status exchange 
messages periodically (i.e. every l updates), but a data bucket also sends its status and what it knows about 
the status of all parity buckets whenever there is an update request.  When an unavailability is detected, 
then all surviving buckets send each others status and exchange update requests that were not delivered.  It 
turns out that an update message can only be not processed if a total of k messages or sites are lost.  

6 Experimental Results  
Implementing HADRAM as an abstraction for SDDS-memory is a difficult task and we have only 
implemented it partially.  In particular, we implement the messaging structure and have shown that 
watermarking because of delayed acknowledgements is preferable to 1PC and 2PC, unless the system 
needs to acknowledge early on to the client. Figure 3 left shows the result of such an experiment where we 
pitch 1PC, 0PC (no acknowledgements) and watermarking with status exchange messages every 10 
messages against each other.  Table 1 gives these times in more explicit form. 
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Figure 3: HADRAM performance.  Messaging (left), Recovery (right) 

We also tested the speed of operations, in particular updates and recovery (Figure 3 right). Our 
experimental platform is quite flexible and better measurements and a greater depth of explanation will be 
included in the final version of this paper.  
   

Model type Time [µseconds] 
1PC 260 
2PC 1050 

Watermark (100) 100 



Watermark (40) 233 
Watermark (20) 251 
Watermark (10) 274 

Table 1: Update Times  
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