
Linked Lists
Thomas Schwarz, SJ

Locks
• Spin locks:

• Retry over and over again

• Blocking locks

• Instead of spinning, go to sleep

• Mechanism to

Locks
• Peterson lock

• Starvation-free mutual exclusion

class Peterson implements Lock { 
private boolean[] flag = new boolean[2]; private int victim; 
public void lock() {

int i = ThreadID.get(); // either 0 or 1 int j = 1-i; 
flag[i] = true; 
victim = i;

while (flag[j] && victim == i) {}; // spin }

}

Locks
• We have shown that the Peterson lock works

• But not in practice!

• Multiprocessor do not

• provide sequentially consistent memory

• guarantee program order among read-writes of a
single thread

• Why?:

• Compilers, Hardware (write buffer)

Locks
• To prevent re-ordering:

• Use special memory barrier instruction

• A.K.A. memory fence

• Can fix Peterson's algorithm by a barrier before each
read

• Memory fences are expensive:

• About same as a Compare-And-Set instruction

Test and Set Locks
• Test And Set operation:

• Consensus number 2

• Used in early multiprocessor architectures

• Test-And-Set (TAS) operates on a single memory word /
byte holding a binary value

• Atomically swaps the value true for the current value

• Return value tells if prior value was true or false

Test and Set Locks

in CPP

std::atomic_flag lock_stream = ATOMIC_FLAG_INIT;

std::stringstream stream;

void append_number(int x) {

 while (lock_stream.test_and_set()) {}

 stream << "thread #" << x << '\n';

 lock_stream.clear();

}

int main ()

{

 std::vector<std::thread> threads;

 for (int i=1; i<=10; ++i)
threads.push_back(std::thread(append_number,i));

 for (auto& th : threads) th.join();

 std::cout << stream.str();

 return 0;

}

Test and Set Locks

in Java

public class AtomicBoolean {

 boolean value;

 public synchronized boolean getAndSet(boolean newValue) {

 boolean prior = value;

 value = newValue;

 return prior;

 }

}

Test and Set Locks
AtomicBoolean lock

 = new AtomicBoolean(false)

…

boolean prior = lock.getAndSet(true)

Test and Set Locks
• Locking

• Lock is free: value is false

• Lock is taken: value is true

• •Acquire lock by calling TAS

• If result is false, you win

• If result is true, you lose

• Release lock by writing false

Test and Set Locks
class TASlock {

 AtomicBoolean state =

 new AtomicBoolean(false);

 void lock() {

 while (state.getAndSet(true)) {}

 }

 void unlock() {

 state.set(false);

 }}

Test and Set Locks

class TASlock {

 AtomicBoolean state = new AtomicBoolean(false);

 void lock() {

 while (state.getAndSet(true)) {}

 }

 void unlock() {

 state.set(false);

 }}
 Lock state is atomic

boolean

Test and Set Locks
class TASlock {

 AtomicBoolean state =

 new AtomicBoolean(false);

 void lock() {

 while (state.getAndSet(true)) {}

 }

 void unlock() {

 state.set(false);

 }}

Keep trying until lock
is acquired

Test and Set Locks
class TASlock {

 AtomicBoolean state =

 new AtomicBoolean(false);

 void lock() {

 while (state.getAndSet(true)) {}

 }

 void unlock() {

 state.set(false);

 }}

Release lock by
resetting state to false

Test and Set Locks
• TAS is a spin-lock

• Uses constant space

Test and Set Locks
• Performance:

• Each processor needs to invalidate cache lines if the value
of the lock changes

Test and Test and Set Locks
• Lurking state:

• Wait until lock looks free

• Spin while read returns true (lock taken)

• Pouncing state

• As soon as lock looks available

• Read returns false (lock free)

• Call TAS to acquire lock

• If TAS fails, go back to lurking

Test and Test and Set Locks
class TTASlock {

 AtomicBoolean state = new AtomicBoolean(false);

 void lock() {

 while (true) {

 while (state.get()) {}

 if (!state.getAndSet(true))

 return;

 }

}

Lurking

Test and Test and Set Locks
class TTASlock {

 AtomicBoolean state = new AtomicBoolean(false);

 void lock() {

 while (true) {

 while (state.get()) {}

 if (!state.getAndSet(true))

 return;

 }

}

Pouncing

Test and Test and Set Locks

Test and Test and Set Locks
• state.get() does not interfere with other processors

class TTASlock {

 AtomicBoolean state = new AtomicBoolean(false);

 void lock() {

 while (true) {

 while (state.get()) {}

 if (!state.getAndSet(true))

 return;

 }

}

Test and Test and Set Locks

Test and Test and Set Locks

Random
Access
Memory

Test and Test and Set Locks

Shared Bus

One processor at a time

Processor and memory

snoop

Test and Test and Set Locks
Small, Fast

Test and Test and Set Locks
• Granularity

• Caches operate with Cache Lines

• fixed sized: 64B or 128B

Test and Test and Set Locks
• Cache coherence protocols

• What happens if A updates something also kept in B's
cache?

•

Test and Test and Set Locks
• Cache contents are in a state of MESI

• MESI

• Modified: Have modified cached data, must write back
to memory

• Exclusive: Not modified, I have only copy

• Shared: Not modified, may be cached elsewhere

• Invalid: Cache contents not meaningful

TTAS Exponential Back-off
• Contention:

• Multiple nodes try to acquire a lock at the same time

• Observation:

• If in TTAS:

• Lock is free

• But TaS fails:

• Probably high contention

TTAS Exponential Back-off
• Backoff:

• Thread sleeps for some time

• Exponential backoff:

• Known from network protocols to deal with channel
contention

• Increase backoff time by doubling up to a maximum
delay

• In practice: Improves performance but improvement
depends on the minimum and maximum delay times

TTAS Exponential Back-off
• Still causes cache coherence traffic:

• All threads spin on the same shared location

• Underuses critical section:

• Threads can delay longer than necessary

• Critical section is then under-utilized

Queue Locks
• Let threads form a queue

• Each thread can learn of its turn by checking
predecessor

• Causes:

• Less cache-coherence traffic as threads spin on
different locations

• Critical section better utilized

• Provides first-come-first-served fairness

Array Based Lock
• Anderson Queue Lock

Array Based Lock
• To acquire the lock:

• Each thread atomically increments the tail field

• This gives it its slot

Array Based Lock

Array Based Lock

Array Based Lock

Another thread wants to acquire the lock

Array Based Lock

Array Based Lock

Advances the next-pointer to acquire its own slot

Array Based Lock

Spins until the flag variable at that slot becomes true

Array Based Lock

The first thread now releases the lock by setting the next
slot to true

Array Based Lock
class ALock implements Lock {

 boolean[] flags={true,false,…,false};

 AtomicInteger next

 = new AtomicInteger(0);

 ThreadLocal<Integer> mySlot;

One slot per
thread

Array Based Lock
class ALock implements Lock {

 boolean[] flags={true,false,…,false};

 AtomicInteger next

 = new AtomicInteger(0);

 ThreadLocal<Integer> mySlot;

Next flag to use

Array Based Lock
class ALock implements Lock {

 boolean[] flags={true,false,…,false};

 AtomicInteger next

 = new AtomicInteger(0);

 ThreadLocal<Integer> mySlot;

This is a
threadlocal

variable

Array Based Lock
public lock() {

 mySlot = next.getAndIncrement();

 while (!flags[mySlot % n]) {};

 flags[mySlot % n] = false;

}

public unlock() {

 flags[(mySlot+1) % n] = true;

}

Claim a slot by
atomically incrementing

the next field

Array Based Lock
public lock() {

 mySlot = next.getAndIncrement();

 while (!flags[mySlot % n]) {};

 flags[mySlot % n] = false;

}

public unlock() {

 flags[(mySlot+1) % n] = true;

}

Wait until predecessor
has released the lock

Array Based Lock
public lock() {

 mySlot = next.getAndIncrement();

 while (!flags[mySlot % n]) {};

 flags[mySlot % n] = false;

}

public unlock() {

 flags[(mySlot+1) % n] = true;

}

Spin until predecessor
has released the lock

Array Based Lock
public lock() {

 mySlot = next.getAndIncrement();

 while (!flags[mySlot % n]) {};

 flags[mySlot % n] = false;

}

public unlock() {

 flags[(mySlot+1) % n] = true;

}

Prepare slot for reuse

Array Based Lock
public lock() {

 mySlot = next.getAndIncrement();

 while (!flags[mySlot % n]) {};

 flags[mySlot % n] = false;

}

public unlock() {

 flags[(mySlot+1) % n] = true;

}

To release slot, set the
slot after mine to True

Array Based Lock
• To avoid cache-coherence traffic:

• Pad the array fields so that each array element is in its
own cache-line

• Performance is then essentially flat!

• But:

• Uses up a lot of space

• Needs to know the maximum number of threads

CLH Lock
• Craig, Hagersten, Landin

• Still FCFS

• Small, constant-size overhead per thread

CLH Lock
• Thread status recorded in a QNode object

• Contains Boolean locked field

• Field true:

• Thread has acquired the lock

• Or: is waiting for the lock

• Field false

• Thread has released the lock

• Lock is a virtual linked list of QNode objects

• List is virtual: Each thread points to its predecessor through a thread-
local pred-variable

• Public tail points to the last node in the queue

CLH Lock
• Thread wants to acquire the lock

CLH Lock
• Thread sets the locked field of its QNode to true

CLH Lock
• Thread applies Swap to the tail:

• Makes its own node the tail of the queue

• Acquires a reference to its predecessor's QNode

CLH Lock
• Because the predecessor's QNode is false, this thread

now has the lock

CLH Lock
• Another thread wants the lock does the same

CLH Lock

CLH Lock
• Its a virtual list because there are no real pointers

between the nodes

CLH Lock
• The second thread spins on the predecessors QNode

• Until the predecessor releases the lock

CLH Lock
• In fact, it spins on the cached copy of the first thread's

node

CLH Lock

CLH Lock

CLH Lock

class QNode {

 AtomicBoolean locked =

 new AtomicBoolean(true);

}

CLH Lock
class CLHLock implements Lock {

 AtomicReference<QNode> tail;

 ThreadLocal<QNode> myNode

 = new QNode();

 public void lock() {

 QNode pred

 = tail.getAndSet(myNode);

 while (pred.locked) {}

 }}

CLH Lock
class CLHLock implements Lock {

 AtomicReference<QNode> tail;

 ThreadLocal<QNode> myNode

 = new QNode();

 public void lock() {

 QNode pred

 = tail.getAndSet(myNode);

 while (pred.locked) {}

 }}
 Queue

Tail

CLH Lock
class CLHLock implements Lock {

 AtomicReference<QNode> tail;

 ThreadLocal<QNode> myNode

 = new QNode();

 public void lock() {

 QNode pred

 = tail.getAndSet(myNode);

 while (pred.locked) {}

 }}

Thread-local QNode

CLH Lock
class CLHLock implements Lock {

 AtomicReference<QNode> tail;

 ThreadLocal<QNode> myNode

 = new QNode();

 public void lock() {

 QNode pred

 = tail.getAndSet(myNode);

 while (pred.locked) {}

 }}

Swap in my node

CLH Lock
class CLHLock implements Lock {

 AtomicReference<QNode> tail;

 ThreadLocal<QNode> myNode

 = new QNode();

 public void lock() {

 QNode pred

 = tail.getAndSet(myNode);

 while (pred.locked) {}

 }}
 Spin until

predecessor is
released

CLH Lock
public void unlock() {

 myNode.locked.set(false);

 myNode = pred;

}

Notify successor

CLH Lock
public void unlock() {

 myNode.locked.set(false);

 myNode = pred;

}

Recycle predecessor's node

