Data Structures

Algorithms

Types of Data Structures

e Organize data to make access / processing fast
e Speed depends on the internal organization

e Internal organization allows different types of accesses

e Problems:

e |arge data is nowadays distributed over several data
centers

e Need to take advantage of storage devices

Types of Data Structures

* |Internal Memory
* DRAM: fast access, byte addressable
e Storage
e Hard Disk Drives
 Data in blocks
* Decent for streaming (consecutive blocks)
e Bad for random access (~10 msec per access)
e Solid State Disks
 Data in blocks (called pages)

* Decent access times (~1msec per access)

Types of Data Structures

e Thread safe:

e Several threads can safely access data structure
e Need collaboration between threads
e Implemented with locks
e Implemented without locks
e Difficult to do

¢ Needs atomic instructions

Types of Data Structures

e Caches can make big performance differences
e Cache aware algorithms
e (Get the parameter of the caches
e Cache oblivious algorithms
e \Work well for all cache sizes
e Dumb algorithms
e Do not pay attention to caches at all

e Frequent surprises with bad performance

Example

e Multiplying two big, non-dense matrices
e Cache aware:
e Break matrices into subsquares

e Three subsquares fit comfortably into cache

(")

Example

e Cache Oblivious

e Use a Divide and Conquer Algorithm that subdivides
the sub-squares repeatedly

* Only cold cache misses when a new subsqguare needs
to be loaded into cache.

Types of Data Structure

e Dictionary — Key - Value Store
e CRUD operations: create, read, update, delete

e Solutions differ regarding read and write speeds

Types of Data Structure

e Range Queries (Big Table, RP)
e CRUD and range operation

Types of Data Structure

* Priority queue:

* |nsert, retrieve minimum and delete it

Types of Data Structure

e Log:
e Append, Read

B-Trees

e B-trees: In memory data structure for CRUD and range
queries

e Balanced Tree

* Each node can have between d and 2d keys with the
exception of the root

* Each node consists of a sequence of node pointer, key,
node pointer, key, ..., key, node pointer

e Tree Is ordered.

* All keys in a child are between the keys adjacent to
the node pointer

B-Trees

e Example: 2-3 tree: Each node has two or three children

B-Trees

e Read dog:

e | oad root, determine location of dog in relation to the
keys

e Follow middle pointer
e Follow pointer to the left

e Find “dog”

B-Trees

e Search for “auk” :

B-Trees

B-Trees

e Range Query c - |

e Determine location of c and |

B-Trees

* Recursively enumerate all nodes between the lines
starting with root

B-trees

Capacity: With / levels, minimumof | +2 + 2% + ... + 2!
nodes:

e 12" —1) keys
Maximumof 1+ 3 +32+ ... + 3! nodes
° %(3l+1 _ 1) keys

B-trees

e |nserts:
e Determine where the key should be located in a leaf
e Insert into leaf node
e | eaf node can now have too many nodes
e Take middle node and elevate it to the next higher level

e Which can cause more “splits”

B-trees

aaaaaa

CCCCCC

eeeeeeeee

eeeeee

B-trees

B-trees

e |nsert: Lock all nodes from root on down so that only one
process can operate on the nodes

e Tree only grows a new level by splitting the root

B-Trees

e Using only splits leads to skinny trees
e Better to make use of potential room in adjacent nodes
e Insert “ewe”.
e Node elk-emu only has one true neighbor.

e Node kid does not count, it IS a cousin, not a
sibling

eeeeee

B-tree

e Promote elk. elk is guaranteed to come right after eft.

e Demote eft

\/

(d Ik)

b, bug ,\T / ogxe /olmrram*\

. J

/ \ / l o / l \
N e N
co cur oe eel emu ewe Ki en rat zho
J A J

B-tree

e |nsert eft into the leaf node

aaaaaa

o |eft rotate /M@ T ﬂ?

B-tree

Overflowing node has a [’
sibling to the left with

space

il
Move left-most key up / il Q\
Lower left-most key _» JEee) (e]

/&/’QT F q\
» /I;l

SEY (0T TS

bot

aaaaaa

bbbbbb

B-tree

/ doe *r klt \
v

IJ\ =z R
i S S

Cwamae || st || owmon e [ome | [eiow || msow]

Insert creates an overflowing node
Only one neighboring sibling, but that one is full
Split!

bbbbbb

Middle key moves up

koi owl

/P/\Q\ = Ry
VAR Y S

I

ape

[aws || wmes [e || owee | [weiow [e

Unfortunately, this gives another overflow
But this node has a right sibling not at full capacity

=

[

kel
N\ / \
ai } [ape J [auk bat J[bug cat][eel elk] [fly fox]

Right rotate:
Move “bot” up
Move “doe” down
Reattach nodes

o

e
3 | -
!

Move “bot” up
Move “doe” down
Reattach the dangling node

an

}/ o 1|

\ l / \

I s

“bot” had moved up
and replaced doe

The “emu” node needs
to receive one key and
one pointer

bot ¥ kit
doe
dangling

B-tree

e Deletes

e Usually restructuring not done because there is no
need

e Underflowing nodes will fill up with new inserts

B-tree

 Implementing deletion anyway:
e Can only remove keys from leaves

e |f a delete causes an underflow, try a rotate into the
underflowing node

e |f this is not possible, then merge with a sibling
e A merge is the opposite of a split
e This can create an underflow in the parent node

e Again, first try rotate, then do a merge

B-tree

Delete “kit”

/ bOt 1 klt \

e

| s :
i // x E/ 3

(=

[awom || meea [ewen [we | [wiow | men

Delete “kit”

“kit” Is in an interior node.
Exchange it with the key in the leave
immediately before
“fox”

After interchanging “fox” and “kit”, can delete “kit”

Now delete “fox”

B-tree

/ bOt ! fox \

o doe/femU\ } .
// X 7 E/ 3

I e [wwsa [weea [ewa [ow][wiow [amew

Step 1: Find the key. If it is not in a leaf
Step 2: Determine the key just before it, necessarily in a leaf
Step 3: Interchange the two keys

/ / S /

N /
i [we [aken || weea [ewac |[e][@ow][s

Step 4: Remove the key now from a leaf

This causes an underflow
Remedy the underflow by right rotating from the sibling

Everything is now in order

Now delete fly

Switch “fly” with “emu”
remove “fly” from the leaf
Again: underflow

Cannot left-rotate: There is no left sibling
Cannot right-rotate: The right sibling has only one key
Need to merge: Combine the two nodes by bringing down “elk”

B-tree

We can merge the two nodes because
the number of keys combined is less than 2 k

Del
ete “emu”

Switch predecessor, then delete from node

B-tree

Now delete “elk”

Results in an underflow

bot % eel
\4
oe

=] (=) |

Results in an underflow
But can rotate a key into the
underflowing node

Result after left-rotation

B-tree

“Now delete “eel”

J e] = J

Interchange “eel” with its predecessor
Delete “eel” from leaf:
Underflow

Need to merge

Merge results in another underflow
Use right rotate
(though merge with right sibling
is possible)

“ass” goes up, “bot” goes down
One node is reattached

Reattach node

In real life

e Use B+ tree for better access with block storage
e Data pointers / data are only in the leaf nodes
e |nterior nodes only have keys as signals

e Link leaf nodes for faster range queries.

B+ Iree

cow# eft

doe dzo
o

T

eel eft

a kid Fpen =
-

Y

orc pen

pig pup }

B+ Iree

e Real life B+ trees:
e Interior nodes have many more keys (e.g. 100)
e | eaf nodes have as much data as they can keep
e Need few levels:

e Fast lookup

Hashing

e Central idea of hashing:
e (Calculate the location of the record from the key
e Hash functions:
e Can be made indistinguishable from random function
e SH3, MDS5, ...
e Often simpler

e |D modulo slots

Hashing

e (Can lead to collisions:

e Two different keys map into the same address

e Two ways to resolve:
e Open Addressing
e Have a rule for a secondary address, etc.
 Chaining

e (Can store more than one datum at an address

Hashing

e Open addressing example:

e Linear probing: Try the next slot

Hashing Example

def hash(a string): 0
accu = 0
i =1 1

for letter in a string:

accu += ord(letter) *i

“ﬂy”, 2

i+=1
return accu % 8

Insert “fly”

N~ O O B~ W DN

Hashing Example

def hash(a string): 0
accu = 0
1 =1 1

for letter in a string:

accu += ord(letter)*i 2 “fly”, 2
i+:1 (11 7 2
return accu % 8 3 gnu-,
4
5
Insert “gnu” 6
hash (“gnu”) —> 2 7

Since spot 2 is taken, move to the next spot

Hashing Example

def hash(a string): 0
accu = 0
1 =1 1

for letter in a string:

accu += ord(letter) *i 2 “fly”, 2
i+=1 (11 7
return accu % 8 3 gnu”, 2
4 “hog”, 3
5
Insert “hog” 6
hash (Y“hog”) —> 3 7

Since spot is taken, move to the next

Hashing Example

def hash(a string): 0
accu = 0
i =1 1
for letter in a string:
accu += ord(letter) *1i 2 “fly”, 2
i+:1 11 7 2
return accu % 8 3 gnu-,
4 “hog”, 3
5
Looking for “gnu” 6
hash (“gnu”) —> 2 7 “pig”, 7

Try out location 2. Occupied, but not by “gnu”

ashing Example

def hash(a string): 0
accu = 0
i =1 1
for letter in a string:
accu += ord(letter) *1i 2 “fly”, 2
i+:1 11 7
return accu % 8 3 gnu”, 2
4 “hog”, 3
5
Looking for “gnu” 6
hash (“gnu”) —> 2 7 “pig”, 7

Try out location 3. Find “gnu”

Hashing Example

def hash(a string): 0
accu = 0
i =1 1
for letter in a string:
accu += ord(letter) *1i 2 “fly”, 2
i+:1 11 7
return accu % 8 3 gnu , 2
4 “hog”’ 3
5
Looking for “ram” 6
hash (\\ram//) _> 3 7 “pig”’ 7

Look at location 3: someone else is there

Look at location 4: someone else is there

Look at location 5: nobody is there, so if it were Iin the
dictionary, it would be there

Hashing

Linear probing leads to convoys:
* Occupied cells tend to coalesce

Quadratic probing is better, but might perform worse with
long cache lines

Large number of better versions are used:
* Passbits
* Cuckoo hashing

e Uses two hash functions

* Robin Hood hashing ...

Hashing

e Chaining
e Keep data mapped to a location in a “bucket”

e Can implement the bucket in several ways

e | inked List

Hashing

B CCa N I I

SOW

tit

Chaining Example with linked lists

Hashing Example

ape ewe SOwW tit

Chaining Example with an array of pointers
(with overflow pointer if necessary)

Hashing Example

0:| ape null null
1: null null null
2:| ewe tit null
3: null null null
4: null null null
o: null null null
6:| sow null null
7 null null null

Chaining with fixed buckets
Each bucket has two slots and a pointer
to an overflow bucket

Hashing

e Extensible Hashing:
 |Load factor a = Space Used / Space Provided
e | oad factor determines performance
e |dea of extensible hashing:

e Gracefully add more capacity to a growing hash
table

Linear Hashing

Linear Hashing

e Extensible Hashing:
e Uses a lot of metadata to reflect history of splitting
e But only splits buckets when they are needed
e Linear Hashing
e Splits buckets in a predefined order
e Minimal meta-data

e Sounds like a horrible idea, but ...

Linear Hashing

e Assume a hash function that creates a large string of bits

e We start using these bits as we extend the address
space

e Start out with a single bucket, Bucket 0

o All tems are located in Bucket O

Bucket O:

19, 28, 33

ltems with keys 19, 28, 33

Linear Hashing

e Eventually, this bucket will overflow
e E.g.Iif the load factor is more than 2
e Bucket O splits
e All items in Bucket 0 are rehashed:

e Use the last bit in order to determine whether the
item goes into Bucket O or Bucket 1

* Addressis h(c) =c (mod 2)

Linear Hashing

o After the split, the hash table has two buckets:

Bucket O: Bucket1:

28 19, 33

o After more insertions, the load factor again exceeds 2

Bucket O: Bucket1:

28, 40 11,19, 33

Linear Hashing

e Again, the bucket splits.
e But it has to be Bucket 0

Bucket O: Bucket1: Bucket 2:

28, 40 11,19, 33

e For the rehashing, we now use two bits, i.e.
h,(c) = c (mod 4)

e But only for those items in Bucket O

Linear Hashing

e After some more insertions, Bucket 1 will split

Bucket 0O: Bucket1: Bucket 2:

28, 40

11,19, 33, 35

6

Bucket O:

28, 40

Bucket1:

33

Bucket 2:

Bucket 3:

11,19, 35

Linear Hashing

e The state of a linear hash table is described by the
number N of buckets

e Thelevel [is the number of bits that are being used to
calculate the hash

e The split pointer § points to the next bucket to be split

 The relationship is
N=2+5s

e This is unique, since always § < 2!

Linear Hashing

e Addressing function

e The address of an item with key ¢ is calculated by

def address(c) :
a = hash(c) % 2**1
1f a < s:
a = hash(c) % 2**(1+1)
return a

e This reflects the fact that we use more bits for buckets
that are already split

Linear Hashtable Evolution

N=1= 20 + 0 def address(c) :
a = hash(c) % 2**1
Number of buckets: 1 1f a < s:
Split pointer: O a = hash(c) s 2**(1+1)
Level: O return a
Bucket 0:

19, 28, 33

Linear Hashtable Evolution

N=2=21+0 def address(c) :
a = hash(c) % 2**1
Number of buckets: 2 1f a < s:
Split pointer: O a = hash(c) s 2**(1+1)
Level: 1 return a
Bucket O: Bucket1:
28 19, 33

Add items with hashes 40 and 11
This gives an overflow and we split Bucket 0

Linear Hashtable Evolution

N=3= 21 + 1 def address(c):
a = hash(c) % 2**1
Number of buckets: 3 1f a < s:
Split pointer: 1 a = hash(c) 5 2%*(1l+1)
Level: 1 return a
Bucket 0: Bucket1:
28, 40 11,19, 33 split Bucket O
Create BRucket 2
Use new hash function on items in Bucket 0
Bucket 0: Bucket1: Bucket 2: No 1tems were moved

28, 40 11,19, 33

Linear Hashtable Evolution

N=3= 21 + 1 def address(c):
a = hash(c) % 2**1

Number of buckets: 3 1f a < s:
Split pointer: 1 a = hash(c) s 2**(1+1)
Level: 1 return a

Bucket 0: Bucket1: Bucket 2: Add i1items 6, 35

28, 40 11, 19, 33

Bucket O: Bucket1: Bucket 2: Because of overflow, we split

28, 40 11, 19, 33, 35 6 Bucket 1

Linear Hashtable Evolution

N=4= 22 + 0 def address(c) :

a = hash(c) % 2**1

Number of buckets: 4 1f a < s:
Split pointer: O a = hash(c) % 2**(1+1)
Level: 2 return a
Bucket O: Bucket1: Bucket 2:
28, 40 11,19, 33, 35 6
Bucket 0O: Bucket1: Bucket 2: Bucket 3:
28, 40 33 11,19, 35

Linear Hashtable Evolution

N=4=2*+0

Number of buckets: 4
Split pointer: O

def address(c) :
a = hash(c) % 2**1
1f a < s:
a = hash(c) % 2**(1+1)

Level: 2 return a
Bucket 0: Bucket1: Bucket 2: Bucket 3: Now add keys 8, 49
28, 40 33 6 11,19, 35
Bucket O: Bucket1: Bucket 2: Bucket 3: C reate S an over f l OW !
28, 40, 8 33, 49 6 11,19, 35 Need to split!

Linear Hashtable Evolution

N=5=2%+1

Number of buckets: 1

Split pointer: 1
Level: 2

def address(c) :
a = hash(c) % 2**1
1f a < s:
a = hash(c) %
return a

2x* (1+1)

Bucket O: Bucket1: Bucket 2: Bucket 3:
28, 40, 8 33, 49 6 11, 19, 35
Bucket O: Bucket1: Bucket 2: Bucket 3: Bucket 4: Create Bucket 4.
40, 8 33, 49 6 11,19, 35 o8 Rehash Bucket 0.

Linear Hashtable Evolution

N=5=2%+1

Number of buckets: 5
Split pointer: 1

def address (c) :

hash(c) % 2**1
1f a < s:

a = hash(c) % 2**(1+1)

Level: 2 return a
Bucket O: Bucket1: Bucket 2: Bucket 3: Bucket 4:
40, 8 33, 49 6 11, 19, 35 28
Bucket O: Bucket1: Bucket 2: Bucket 3: Bucket 4:
40, 8 9, 33, 49 6, 42 11, 19, 35 28

Add keys 9, 42

Creates an overflow!
Need to split!

Linear Hashtable Evolution

N=6=2%+2

def address (c) :

a = hash(c) % 2**1

Number of buckets: 1 1f a < s:
Split pointer: 2 a = hash(c) % 2**(1+1)
Level: return a
Bucket O: Bucket1: Bucket 2: Bucket 3: Bucket 4:
40, 8 9, 33, 49 6, 42 11, 19, 35 28 Split
Bucket O: Bucket1: Bucket 2: Bucket 3: Bucket 4: Bucket 5:
40, 8 9, 33, 49 6, 42 11, 19, 35 28

No i1tem actually moved, but average load factor 1s now
agaln under 2.

Linear Hashtable Evolution

N=6=2%+2

Number of buckets:

def address (c) :
a = hash(c)

1f a < s:

5 2*%*1

a = hash(c) % 2**(1+1)

Split pointer: 2
Level: return a
Bucket O: Bucket1: Bucket 2: Bucket 3: Bucket 4: Bucket 5:
40, 8 9, 33, 49 6, 42 11, 19, 35 28
Bucket O: Bucket1: Bucket 2: Bucket 3: Bucket 4: Bucket 5:
40, 8 9, 33, 49 6, 10, 42 11, 19, 35 28 5

add 5,10

Linear Hashtable Evolution

N=7=2%+3

def address (c) :
a = hash(c) % 2**1

Number of buckets: 7 1f a < s:
Split pointer: 3 a = hash(c) % 2**(1+1)
Level: 2 return a
Bucket O: Bucket1: Bucket 2: Bucket 3: Bucket 4: Bucket 5:
40, 8 9, 33, 49 6, 10, 42 11, 19, 35 28 5
Bucket O: Bucket1: Bucket 2: Bucket 3: Bucket 4: Bucket 5: Bucket 6:
40, 8 9, 33, 49 10, 42 11,19, 35 28 5 6

Linear Hashtable Evolution

N="7= 22 + 3 def address(c) :
a = hash(c) % 2**1

Number of buckets: 7 1f a < s:

40, 8

9, 33, 49

10, 42, 74

11,19, 35

28, 92

5

6

: . — o
Split pointer: 3 a = hash(c) % 2**(1+1)
Level: 2 return a
Bucket 0: Bucket1: Bucket 2: Bucket 3: Bucket 4: Bucket 5: Bucket 6: add 92, 74
40, 8 9, 33, 49 10, 42 11,19, 35 28 5 6
Bucket O: Bucket1: Bucket 2: Bucket 3: Bucket 4: Bucket 5: Bucket 6:

Linear Hashtable Evolution

N=28= 23 + 0 def address(c) :

a = hash(c) % 2**1

Number of buckets: 8 1f a < s:
' ' - (@)
Split pointer: O a = hash(c) % 2**(1+1)
Level: 3 return a
Bucket 0: Bucket1: Bucket 2: Bucket 3: Bucket 4: Bucket 5: Bucket 6:
40, 8 9, 33, 49 10, 42, 74 11,19, 35 28, 92 5 6
Bucket O: Bucket1: Bucket 2: Bucket 3: Bucket 4: Bucket 5: Bucket 6: Bucket 7:
40, 8 9, 33, 49 10, 42, 74 11, 19, 35 28, 92 5 6

Linear Hashtable Evolution

N =8 = 23 + 0 def address(c) :
a = hash(c) % 2**1
1f a < s:

a = hash(c) % 2**(1+1)

Number of buckets: 8
Split pointer: O

LLevel: 3 return a
add 13, 54
Bucket 0: Bucket1: Bucket 2: Bucket 3: Bucket 4: Bucket 5: Bucket 6: Bucket 7:
40, 8 9, 33, 49 10, 42,74 11,19, 35 28, 92 5 6
Bucket O: Bucket1: Bucket 2: Bucket 3: Bucket 4: Bucket 5: Bucket 6: Bucket 7:
9, 33, 49 10, 42,74 11,19, 35 28, 92 5,13 6, 54

Linear Hashtable Evolution

N=9=23+1

Number of buckets:
Split pointer: 1
Level: 3

9

def address(c) :
a = hash(c) % 2**1
1f a < s:
a = hash(c) % 2**(1+1)
return a

Bucket 0O: Bucket1: Bucket 2: Bucket 3: Bucket 4: Bucket 5: Bucket 6: Bucket 7:
9, 33, 49 10, 42, 74 11,19, 35 28, 92 5,13 6, 54

Bucket O: Bucket1: Bucket 2: Bucket 3: Bucket 4: Bucket 5: Bucket 6: Bucket 7: Bucket 8:
9, 33, 49 10, 42, 74 11,19, 35 28, 92 5,13 6, 54 40, 8

Linear Hashtable Evolution

N=9=23+1

def address (c) :

a = hash(c) % 2**1
Number of buckets: 9 1f a < s:
Split pointer: 1 a = hash(c) 2x*(1+1)
Level: 3 return a
Bucket 0: Bucket1: Bucket 2: Bucket 3: Bucket 4: Bucket 5: Bucket 6: Bucket 7: Bucket 8: add 1,
9, 33, 49 10,42, 74 11,19, 35 28, 92 5,13 6, 54 40, 8
Bucket 0O: Bucket1: Bucket 2: Bucket 3: Bucket 4: Bucket 5: Bucket 6: Bucket 7: Bucket 8:
1,9, 33, 49, 10, 42, 74 11,19, 35 28, 92 5,13 6, 54 40, 8

81

81

Linear Hashtable Evolution

N=10=2+2

Number of buckets: 10
Split poilnter:

a:
1f

ad

def address (c)
hash (c)
a < s:

5 2*%*1

hash (c)
return a

2x* (1+1)

Level: 3
Bucket 0: Bucket1: Bucket 2: Bucket 3: Bucket 4: Bucket 5: Bucket 6: Bucket 7: Bucket 8: Bucket 9:
1, 33, 49, 81 10, 42, 74 11, 19, 35, 67, 28, 92 5,13 6, 54 39 40, 8 9
99
Bucket O: Bucket1: Bucket 2: Bucket 3: Bucket 4: Bucket 5: Bucket 6: Bucket 7: Bucket 8: Bucket 9: Bucket 10:
1, 33, 49, 81 11, 19, 35, 67, 28, 92 5,13 6, 54 39 40, 8 9 10, 42, 74

99

Linear Hashing

e Observations:
e Buckets split in fixed order

¢ 0,0,1,0,1,2,3,0,1,2,3,4,5,6,7,0,1,2, ..., 15,
0, ...

e Address calculation is modulo 2’, l.e. the [least
significant bits

e Buckets O, 1, ..., s-1 and 2™/, 2**/+1, ... N-1 are
already split, they have on average half the size of
the buckets s, s+1, ..., 2™.

Linear Hashing

e Observations:

 An overflowing bucket is not necessarily split
iImmediately

e Sometimes, a split leaves all keys in the splitting bucket
or moves them all to the new bucket

 On average, a bucket will have a items in them

