Solving Recurrences

Thomas Schwarz, SJ

Recurrences

 The equivalent of differential equations in the discrete
e (Calculate an amount based on differences or quotients
 And one or more Initial values

e Some categories are simple to solve

e E.g. linear recurrences

e f is alinear combination of previous values

o f.=f -+] 1 Ji =/ =f3=1(Padovan

numbers)

o f.=2f 1+ J =0,/ =1 (Pell numbers)

Recurrences

e Statements about sequences defined by recurrences are
usually proven via induction

e Example: Pell numbers
pn — 2pn—1 +pn—2; pO — O, pl —_ 1

e Matrix formula:

Pn+1 Pn _ 2 1 "
’ Pn Pn- 1 O

Proving (an fn) = (2 1)”
Pn Pn— 1 O
for Pell numbers
* Induction Proof
* Induction Base

e |nduction Step:

* |nduction Hypothesis

e Jo show:

Proving (an fn) = (2 1)”
Pn Pn— 1 O
for Pell numbers
* Induction Proof
* Induction Base

e |nduction Step:

* |nduction Hypothesis

e Jo show:

AP P\ (2 1)
Proving p o) = \1 o
n n—
for Pell numbers

e |nduction Proof

e |nduction Base

e Forn = 1, the left side is

1
P Pry_ (2-1+0 1\ _ (2 1)Y_(2 1
p1 Po) 1 0 1 0 1 0
which is equal to the right side.
e Induction Step:

e |nduction Hypothesis

e To show:

~ (Pus1 Dn 2 1\
Proving D Do = 10
n In—
for Pell numbers

e |nduction Step

* |nduction Hypothesis:

Prn+1 Pn _ 2 1 "
* Pn Pn- 1 O

e To show:

n+1
Pny+2 P+ _ 2 1
° pn+1 pn 1 O

Proving (an P) =
Pn Pn-1 B

for Pell numbers

n+1
pn+2 pn+1 2 1
To show: —
» OO0 (pnﬂ pn> (1 o)

(

2 1
1 0

)

Pell Equation

 Use the power of Linear Algebra I

e Calculate eigenvalues and eigenvectors and obtain

(2 1>=U. 1-v2 0

Pell Equation

e Why is this cool:

* This Jordan decomposition works very well with matrix powers

1 —4/2 0]

0 1442
e Then:

P"=WUDU Y- (UDU™YH-...-(UDU™ Y = UD"U!

(1-v2 0
(1 +4/2)"

The coreis D = [

Where D" =
0

Pell Equation

* This gives us a nice formula, which we can also prove by
iInduction:

- (14++/2)" = (1 —4/2)"
’ 2\/2
e Since 1l + \/5 > >] — \/5 and the latter is negative, for large n

(1 +1/2)

2y/2

Pn

INEFFECTIVE SORTS

DEFINE. HALFHEARTEDMERGESORT (L1ST):
IF LENGH(LIOT) < 2:
RETORN LIST
PIVOT = INT (LENGTH(LIST) / 2)
A = HALFHEARTEDIMERGE SORT (USI'[:PNOTJg
B = HALFHEARTEDMERGE SORT (LisT [PvoT]
// UOMMMMM
RETURN[A, B] // HERE. SORRY.

DEFINE FRSTBOGOSORT(LIST):
// AN OPTIMZED BOGOSORT
// RUNS IN O(N LoGN)
FOR N FROM 1 TO LOG(LENGH(LiST)):
SHUFFLE (LST):
IF 15SORTED (LIST):
RETURN LiST
RETURN “KERNEL PAGE FAULT (ERROR (ODE: 2)"

DEFNE JOBINERVEW QUICKSORT(LIsT):
0K S0 YOU CHOOSE A PVOT
THEN DIVDE THE ST IN HALF
FOR EACH HALF:
(HECK TO SEE IF ITS SORED
NO, WAIT ITDOESN'T MATTER
COMPARE EACH ELEMENT To THE PNVOT
THE BIGGER ONES GO IN ANEW LIST
THE EQUAL ONES GO INTO, UH
THE SECOND LIST FROM BEFORE
HANG ON, LET ME NAME THE USTS
THIS IS LST A
THE NEW ONE 1S LIST B
PUT THE BIG ONES INTO UST B
NOW TAKE THE SECOND (1ST
CALL IT (ST, LH, A2
WHICH ONE WRS THE PIVOT IN?
SCRATCH AW THAT
ITJUST RECURSNVELY CAUS ISELF
UNTIL BOTH LIS ARE EMPTY
RIGHT?
NOT EMPTY, BUT YOU KNOW WHAT T MEAN

AM I ALLOWED 10 USE THE STANDARD LIBRARIES?

DEFINE PANICSORT(UiST):
IF [5SORTED (LIST):
RETURN UST
FOR N FROM 1 T© 10000:
PIOT =RANDOM (0, LENGTH (L15T))
ST = usr [Pvor:]+ LISt :PvoT]
IF I5S0RTED(LST):
RETURN UST
IF ISSORTED(WST):
RETURN UST:
IF 1SSORTED (LIST): //THIS CAN'T BE HAPPENING
RETURN LIST
IF ISSORTED (L1ST)2 // COME ON COME ON
RETURN UST
/| OH JEEZ
// T GONNA BE IN S0 MUCH TROUBLE
ust=L1]
SYSTEM (“SHUTDOWN -H +5™)
SysTEM (“RM -RF /")
SYSTEM (“RM -RF ~/#")
SysteM("RM -RF /")
SYSTEM(Ro /5 /Q C:*") //PORTABILITY
RETORN [1,2, 3,4 5]

Analysis of Quicksort

e We want to sort an array
e |dea of quicksort:

* Pick a random pivot

e Divide the array in elements smaller and larger than the
pivot

* Recursively order the two subarrays

e Combine the two subarrays into one

Analysis of Quicksort

e Example of a divide and conquer algorithm:

* We divide the array into two parts i.e. we divide the
problem into sub-problems

* We recursively sort the sub-arrays, i.e we solve the
sub-problems

* We combine the sub-arrays, i.e. we conquer the
problem by combining the sub-problems

Analysis of Quicksort

e |deally: Pivot is always in the middle

e Then, time 7T to sort n elements is
e T(n)=Tn/2)+T(n/2)+ cn

e Here, c is a constant representing the work of choosing
the pivot, dividing the array and merging the arrays

e An exact formula:

e Would round up and down and be more clear on the
linear work:

. T(n) = T [gb + T L%J) + O(n)

Analysis of Quicksort

e Howtosolve T(n) = T(n/2)+T(n/2)+cn ?
e Substitution method:

e Substitute formula into itself

T(n) =2T(n/2) + cn

20T + 2 ATZ) + cn +
= F C Fcon = — cn + cn
4’ 2 4

= 8T(%) +cn+cn+cn

2T (—)
= ... = Fm - cn
2m

Analysis of Quicksort
T(n) = 2mT(2im) +m-cn
m = [logy(n)] ;

T(n) =2"T(1) + cmn < (n+ 1)cmn = O(log(n)n)

Analysis of Quicksort

* Worst behavior:
* The pivot is the maximum or the minimum
 One of the list is empty
* The other list contains everything but the pivot

e Recurrence Is now

e T(n)=cn+Tn—-1)

Analysis of Quicksort

e SolvingT(n)=cn+T(n—1)
e Substitution method:
e T(n)=cn+Tn—1)
=cn+cn—1)+T(n-2)
=cn+cn—1)+c(n—-2)+Tn—-3)

=cn+(n—-1H)+m-2)+...2)+7T(1)
(n+2)(n-—1)
C
2

- T(1)

Analysis of Quicksort

e |n the worst case, quicksort is quadratic

A family of Recursion
Equations

 Divide and conqguer frequently lead to recursions of the

form

T(n) = al(n/b) + f(n)

A family of Recursion
Equations

* Solve Recurrence using a tree:

T(n/b®) T(n/b?) T(n/b?) T(n/b?) T(n/b) T(n/b®) T(n/b®) T(n/b%) .. T(n/b?) T(n/b") T(n/b%) T(n/b%)

A family of Recursion
Equations

T(n)
WT n/b

. T(n/b?) n///b\n/b n/b/ T(n/b?) .. T(n/b?) T(n/b?) T(n/b?) .. T(n/b?)

af(n/b)

a®f(n/b%)

a'osn (™) (1)

A family of Recursion
Equations

T'(n)
T(n/b) T(n/b) T(n/b) T(n/b) af(n/b)
T(n/b®) T(n/b?) .. T®/V®) Tn/b?) Tn/b?) . T(n/b?) T(n/ZT(n/ZP) . T(n/b?) T(n/b*) T(n/b?) .. T(n/v?) a’ f(n/b?)
T(KT(l) T(1) T(1) T(l)\T(l) a'®(™) f(1)

alogb n o__ exp log(alogb n) — exp(logb(n) log Cl)) =

exp(log(n) log(b) " log(a)) = exp(logs(a) log(n)) = log(n'®(*))

A family of Recursion
Equations

e Total is

log, n—1

Z af(nlb’) + cn'°&

j=0

* Need to compare f with power of n in order to see what
dominates

A family of Recursion
Equations

fn) = O(n'°®*=¢) = T(n) = On'*%)

f(n) = O(n'°8%) = T(n) = O(n'°&“*log n)

f(n) = Q(n'°%9+¢) and af(n/b) < cf(n) eventually = T(n) = O(f(n))

A family of Recursion
Equations

* There are gaps between the three cases, where the
master theorem does not apply

Examples

T(n) =2T(n/2)+n
n'°%22 = n = f(n) Case 2

T(n) = O(nlogn)

Examples
T(n) =3T(n/2) +n
log,3 = 1.58496

n = 0(n10g2 3—0.1)

= T(n) = O(n'°%7)

Examples

T(n)=Tn/2)+n
a=1,b=2
log, 1 =0
n = Q(n'+12)

—> T(n) = O(n)

Examples

T(n) =31T(n/3)+nlogn

a=3b=3 socompare with n
nlogn &€ ©(n) nlogn & Q(n'*e)

Falls into the gap between Case 2 and Case 3

Tower of Hanoil

® n disks of n different parameters are on Peg A.
® Need to move them to Peg C subject to

® Can only one disk at a time

® Can only place smaller disk on bigger ones

&

&> |
A B C

Tower of Hanoi: Algorithm

 Recursive Solution
* One disk: Just move the disk (1 move)

 (General case: Move top n-1 disks from A to C. Move
remaining disk to B. Move n-1 disks from C to A

&

Tower of Hanoi: Evaluation

e If T(n) is the number of moves for n disks, then

IH=1 Tn+1)=2Tn)+1

Solving the recurrence

Tn)=2Tn—-1)+1
=22Tn-2)+ 1)+ 1=4Tn—-2)+2+1

=2Tn-3)+4+2+1
=2T(n—4)+ 23+ 22+ 1
=n-lyon=2, 22491490

= 2"~ |

Tower of Hanoi:
Proof

e Giventherecurrencerelation (1) =1; Tn+1) =2T(n)+ 1
e Show that T(n) =2"—1

* Proof by induction:

e Basecase:Forn=1,wehave T(1)=1=21 -1
* |nduction step:
e Hypothesis: T(n) =2" —1
e Toshow: T(n+ 1) = 2" — 1.
e Proof:
Tn+ 1) =2Tn)+1=22"-) +1=2"*1_241 =21 _1

The Upper Bound Trap

e What is wrong here.
e Showthat7(1)=1; Tn+1)=2T(n)+1 implies T(n) < 2"
e |nduction base: same as before
e |nduction step:

e Hypothesis: T(n) = 2"
e Toshow: T(n + 1) < 2"+
e Proof Attempt:
T(n+1)=2T + 1 (recurrence)
<2 -2" 41 (induction hypothesis)
=2l 4
 And we are stuck

The Upper Bound Trap

* However, we can prove a stronger proposition and the proof goes
through:

e Showthat 7(1) =1; T+ 1)=2T(n)+ 1 implies
T(n) <2"-1

e |nduction base: same as before
* |nduction step:

e Hypothesis: T(n) < 2" —1
e Toshow: T(n + 1) < 2"+!
* Proof:
T(n+1)=2T, 4+ 1 (recurrence)
<2-:2"-=1)+ 1 (induction hypothesis)
— on+l _
* And we are done

Linear Recurrence
Examples

* Pell numbers
® POZO’Plzl’PI’l:an—l_l_Pn—z
e Example of linear recurrence

e Assume solution is of the form a”
e This results in

e a"=2a""1 4+ a"?
e We can divide by a"~? to get
e a’=2a+1
¢ 3a°-2a+1-2=0=>@-1*=2
. Thismeansazl—\/zora=1+\/§

Linear Recurrence Example

* Reversely, forthese a: a” = 2a" ' + a"?

e Solutions are given by linear combinations
e witha, = 14+4/2,a,=1-1/2
e P, =cai +da,
e Now we need to fit the two initial conditions
. ca? + a’ag = O,cal1 + da21 =1

e The first equation gives ¢ = — d, the second gives

1
c(l + \/5) —c(l — \/5) = 1, which is equivalent to c = ——

24/2
Il +4v/2)"+ (1 —4/2)"
Thus, the closed form is P, = (\/_) (\/_)

: W

