Linked List

Set Data Structure

e Operations:
e Add an element
e Remove an element

* Answer question about containment

* Implemented as a singly linked list

Linked List

* Adding threads should not lower throughput

e Contention effects
* Fixed by queue locks
 Should increase throughput
 Not possible if inherently sequential

e But surprising things are parallelizable

Linked List

* Coarse-Grained synchronization
* Each method locks the object
* Avoid contention using queue locks
 Easy to reason about
 But "Sequential Bottleneck"

e Threads stand in line

* So adding more threads does not improve
throughput

* |n fact, could make things worse

Linked List

* |Instead of using a single lock:
* Use fine-grained synchronization
e Split object into
* independently synchronized components

* Methods conflict only:

* When they access the same component at the
same time

Linked List

e Use optimistic synchronization

e Search without locking

e |f you find it, lock, and check that it did not change
* |n general, optimistic synchronization

e |s good when it works

e But mistakes are expensive

Linked List

* |azy synchronization
e Postpone hard work
e Removing components is tricky
* So use logical removal:

e Mark the component as deleted instead of
deleting it

* Followed by physical removal:

 Delete the component

Linked List

* Lock-free Synchronization
e Don't use locks at all
e Use Compare-And-Set and relatives
* Needs no scheduler assumptions or support

e But is complex and can have high overhead

Linked List

e Singly linked list:

e Use a List Node class

public class Node {
public T 1tem;
public int key;
public volatile Node next;

Linked List

e Use Sentinel Nodes

= {@3—@3*;;]7
=)

Sorted with Sentinel nodes
(min & max possible keys)

Linked List

* QOperations involve pointer chasing

add ()

(I3—Gl3+—c[F—>d[3—

remove ()

([3F—al3+—b[3F—{]3—

Linked List

- ([) | 3—>€I3\ c[F—d[3—>

remove ()

(T9—(a b F—>{c] -

Coarse Grained Locking

e Coarse Grained Locking

e Single hotspot + bottleneck leads to convoys

Fine Grained Locking

* Fine-grained locking
* Requires care
e Split object into pieces
e Each piece has its own lock

* Methods that work on disjoint set of pieces do not
exclude each other

Fine Grained Locking

 Hand-over-Hand locking

I~ [F—blF—]

g

Fine Grained Locking

 Hand-over-Hand locking

O O
3G F—e— ([~

Fine Grained Locking

 Hand-over-Hand locking

([l b[F—]

g

Fine Grained Locking

 Hand-over-Hand locking

O o6
[]3—»@3—»%@%
LY

Fine Grained Locking

* Implementing remove

* Problem arise when other threads try to access an
adjacent node

SEROEROEOENAES

g

Fine Grained Locking

* Hand-to-hand locking assures that a thread that tries a
competitive operation has a lock conflict

B (g O g (I g (K e

g

Fine Grained Locking

[[3—Gl~

Fine Grained Locking
(B-EL 3—@D

Fine Grained Locking

 Why lock the victim node?

[[3—taly [J—lal]
g

Fine Grained Locking

* Another thread might want to add after b

e Homework 3

Fine Grained Locking

e Concurrent Removal

BE g O g (1E g O g (1

Lk

Fine Grained Locking

e Concurrent Removal

B (OB (I g (I g (1K ue

Lkl

Fine Grained Locking

e Concurrent Removal

BE g Ol (0K 5o (e g ClE e

Art of Multiprocessor Programming 78

Fine Grained Locking

e Concurrent Removal

(3 l3—bl3 (3]

Fine Grained Locking

e Concurrent Removal

(3 l3—bl3 (3]

Fine Grained Locking

e Concurrent Removal

B (O (O 5o I g C1E e

Art of Multiprocessor Programming 81

Fine Grained Locking

e Concurrent Removal

SERIOEMNE MO OE p:

Art of Multiprocessor Programming 82

Fine Grained Locking

e Concurrent Removal

B (O o AN CIE g Cl e

Lkl

Fine Grained Locking

e Concurrent Removal

(13—Cly | LY ([3—(]3

Art of Multiprocessor Programming 84

Fine Grained Locking

e Concurrent removal undoes one threads work

[[F~ly GEaCIE s
Lkl

Fine Grained Locking

e Node ¢ has not been removed

(~6Q (EBreB-
Lok

Fine Grained Locking

e Problem

 To delete node C, we swing its predecessor's next-field

to Its successor

 But someone could create another pointer to C

aly bly e[~

Fine Grained Locking

(1F=>Gl3—b[5>[]3>l][+>

Lk

Fine Grained Locking

([F= 3kl

Lk

Fine Grained Locking

B (O g (IE g OB g CIE

Lk

Fine Grained Locking

L+ el 3kl el

Lk

Fine Grained Locking

B OV (OIS g O g1

Lk

Fine Grained Locking

B g Ol (O 5o OB g I

Lk

Fine Grained Locking

6 O
B (A5 g CIE g C1E g

-
Ooo :

Fine Grained Locking

Fine Grained Locking

Fine Grained Locking
6 O

ddibr
W7

Fine Grained Locking
6 O

L mlals @{/@3*

Fine Grained Locking
6 O

L Tlals @[3~
remove(b)

e

Fine Grained Locking

Fine Grained Locking

([~ ‘3 OEas
g

Fine Grained Locking

([5—(al ‘3 OEas

Fine Grained Locking

public boolean remove (T 1tem) {
int key = 1tem.hashCode () ;
Node pred, curr;

try {
} finally { Key used to
curr.unlock () ; order nodes

pred.unlock () ;
I

Fine Grained Locking

public boolean remove (T 1tem) {
int key = 1tem.hashCode () ;
Node pred, curr;

try {
b finally { Precursor and
curr.unlock () ; current node

pred.unlock () ;
I

Fine Grained Locking

public boolean remove (T 1tem) {
int key = 1tem.hashCode () ;
Node pred, curr;

try {
} finally { Make sure
curr.unlock () ; locks are freed

pred.unlock () ;
b}

Fine Grained Locking

public boolean remove (T 1tem) {
int key = 1tem.hashCode () ;
Node pred, curr;
try {

} finally {
curr.unlock () ;
pred.unlock () ;

I

Everything else

Fine Grained Locking

e Remove

try {

pred = head;
pred.lock() ;

curr = pred.next;
curr.lock () ;

}mfinally { ...}

Fine Grained Locking

try {
pred = head;
pred.lock() ;

curr = pred.next;
curr.lock () ;

}mfinally { ...}

Fine Grained Locking

try {
pred = head;
pred.lock() ;

curr = pred.next;
curr.lock () ;

}mfinally { ...} -

Fine Grained Locking

while (curr.key <= key)
1f (1tem == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock () ;
pred = curr;
cCurr = curr.next;
curr.lock () ;

J

return false;

Fine Grained Locking

Loop Invariant:

while (curr.key <= key) At start of while,

1f (item == curr.item) { pred and curr are
pred.next = curr.next; locked

return true;

}
pred.unlock () ;
pred = curr;

cCurr = curr.next;
curr.lock () ;

J

return false;

Fine Grained Locking

Loop Invariant:

while (curr.key <= key) At start of while,

1f (item == curr.item) { pred and curr are
pred.next = curr.next; locked

return true;

}
pred.unlock () ;
pred = curr;

cCurr = curr.next;
curr.lock () ;

J

return false;

Fine Grained Locking

while (curr.key <= key) { If item found,
1f (1tem == curr.item) { delete node
pred.next = curr.next;
return true;
}
pred.unlock () ;
pred = curr;
cCurr = curr.next;
curr.lock () ;

J

return false;

Fine Grained Locking

while (curr.key <= key) { Unlock
1f (item == curr.item) { predecessor
pred.next = curr.next;
return true;
}
pred.unlock () ;
pred = curr;
cCurr = curr.next;
curr.lock () ;

J

return false;

Fine Grained Locking

while (curr.key <= key) {
1f (1tem == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock () ;
pred = curr;
curr = cCcurr.next;
curr.lock () ;

J

return false;

Fine Grained Locking

while (curr.key <= key) {
1f (1tem == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock () ;
pred = curr;
curr = cCcurr.next;
curr.lock () ;

J

return false;

Acquire next node

Fine Grained Locking

while (curr.key <= key) {
1f (1tem == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock () ;
pred = curr;
curr = cCcurr.next;
curr.lock () ;

J

return false;

Acquire next node

Fine Grained Locking

while (curr.key <= key) {
1f (1tem == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock () ;
pred = curr;
Curr = curr.nex
curr.lock () ;

J

return false;

Lock next node

Fine Grained Locking

while (curr.key <= key) Loop invariant
1f (1tem == curr.item) { restored

pred.next = curr.next;
return true;
}
pred.unlock () ;
pred = curr;
Curr = curr.nex
curr.lock();

J

return false;

Fine Grained Locking

while (curr.key <= key) Otherwise, return
1f (1tem == curr.item) { false

pred.next = curr.next;
return true;

}
pred.unlock () ;
pred = curr;

cCurr = curr.next;
curr.lock () ;

J

return false;

Fine Grained Locking

 Execution history is Linearizable:
 Equivalent to a sequential history
 Jo argue something is linearizable:

 (Can find "linearization points”

Fine Grained Locking

e |nvariants:
e All items in the set are in nodes reachable from head
* All nodes are arranged in order

* We show that invariants are maintained by methods

Fine Grained Locking

e Why remove is linearizable

e Case 1: ltem is in the list
while (curr.key <= key) {

i1f (item == curr.item) {
pred.next = curr.next;
return true;

}

pred.unlock () ;

pred = curr;

cCurr = curr.next;
curr.lock();

J

return false;

Fine Grained Locking

* Why remove is linearizable

e Case 1: ltemis in the list

* Then pred.next = curr.next while (curr.key <= key) |

. . C. . 1f (i1tem == curr.item) {
IS a linearization point
pred.next = curr.next;
* |nvariants: return true;
}
* pred is reachable from head pred.unlock () ;
e curr is pred.next pred = curr;
cCurr = curr.next;
e curris in the set curr.lock();

J
* No other thread can access either yctyrn false:

pred or curr during assignment

Fine Grained Locking

e Why remove is linearizable

e After removal:
while (curr.key <= key) {

* curris no longer if (item == curr.item) {
reachable: item is pred.next = curr.next;
removed return true;

e pred is reachable from E})red,unlock () ;
head pred = curr;

curr = curr.next;

* old currnextisreachable ..., 1ock();

J

e for all other nodes,
return false;

reachability has not
changed

Fine Grained Locking

e Why remove is linearizable

e Case 2: ltem is not in the

list while (curr.key <= key) {
i1f (item == curr.item) {
o pred.next = curr.next;

return true;

}
pred.unlock () ;
pred = curr;
cCurr = curr.next;
curr.lock () ;

J

return false;

Fine Grained Locking

e Why remove is linearizable

e Case 2: ltem is not in the

list while (curr.key <= key)
1f (i1tem == curr.item) {
e return false is pred.next = curr.next;

return true;

}
pred.unlock () ;
pred = curr;
cCurr = curr.next;
curr.lock () ;

J

return false;

linearization point

Fine Grained Locking

e Why remove is linearizable

e |nvariants are not

changed wh}le Fcurr.key <= key) {
1f (1tem == curr.item) {
e Need to show pred.next = curr.next;
_ return true;
correctness: \
e Use induction to argue ~ Pred-uniockl)y
. . . pred = curr;
that item is not in the CUTrT = curr.next:
set curr.lock () ;

J

return false;

Optimistic Locking

 Only lock when you are ready
e Traverse list to find insertion / removal point

e Then lock needed nodes after validation!

Optimistic Locking

(T5—GT F, ar=

e[+=—»

Optimistic Locking

G.
(T3 G 3—r 6 '

F a3

Optimistic Locking

e Why we need validation

Thread 1: Add d

~~| @4—t 3 |@=—> b [@——>| c | &—>| c | &—>| =

Threads: Delete b and c

Thread 1: Add d, locks found nodes

—oo| @t o | @~

Thread 1: Add d, locks found nodes

ceo| @l 2 .’/_\ -

Optimistic Locking

 What can go wrong?

* Nodes might no longer be there

Optimistic Locking

6 6
(3@ F=»b] F>d[F>Cc[3>
A3

Optimistic Locking
T2

T

Optimistic Locking

(T3— G0 @3—E3—

add(c) N Uh-oh
O

Optimistic Locking

Need to validate

Optimistic Locking

 \What else can go wrong?

15— e~ farstars-
\/&

Optimistic Locking

Optimistic Locking

Optimistic Locking

AN

e[3=

Optimistic Locking

* Need to validate while holding locks

-

F, T3
(oo, oo

Yes, b still
points to d

Optimistic Locking

* Need to validate while holding locks

e Linearization point

(13—l 3+—r ED\—»@:-]-—»g:.]_.

Optimistic Locking

e Optimistic locking:
e Search without acquiring locks
* Lock the nodes found
e Confirm that locked nodes are correct

 For inserting a node between Node A and Node B:

e Node A is reachable from head

e Node B is still the successor of Node A

Optimistic Locking

e \/alidation:
 Reachability of Node A

* No operation changes reachability with exception of
the Node being removed

e Verify that!

 Therefore: we do not need locks to verify reachabillity

Optimistic Locking

private boolean
validate (Node pred,
Node curry) {
Node node = head;
while (node.key <= pred.key) {
1f (node == pred)
return pred.next == curr;
node = node.next;

J

return false;

J

Optimistic Locking

e Addition: Phase 1: searching

public boolean add (T 1tem) {
int key = i1tem.hashCode () ;
while (true) {
Node pred = head;
Node curr = pred.next;
while (curr.key <= key) {
pred = Ccurr; Ccurr = curr.next;

Optimistic Locking

e Addition: Phase 2: Locking

pred.lock () ;
curr.lock () ;

Optimistic Locking

e Addition: Phase 3: Validation and Update

try {
1f (validate (pred, curr)) {
1f (curr.key == key) {
return false;

} else {
Node node = new Node (item) ;
node.next = curcr;
pred.next = node;
return true;

J

}
} finally f{

pred.unlock () ;
curr.unlock () ;

Optimistic Locking

e Remove

public boolean remove (T i1tem) {
int key = 1tem.hashCode() ;
while (true) {
Node pred = head;

Node curr = pred.next;
while (curr.key < key) {
pred = curr;

cCurr = Ccurr.next;

Optimistic Locking

e Remove: Lock phase

pred.lock () ;
curr.lock () ;

Optimistic Locking

e Remove: Validation and deletion phase

try {
1f (validate (pred, curr)) {
1f (curr.key == key) {
pred.next = curr.next;
return true;
} else |

return false;

J

}
} finally {

pred.unlock(); curr.unlock();

J
b}

Optimistic Locking

* On exit from loop and in the absence of
synchronization problems:

public boolean remove (T item) {

. . 1nt k = 1tem.hashCode () ;
e If item is present: Chile(true i TTE

true) {
Node pred = head;
e curr holds item Node curr = pred.next;
while (curr.key < key) {
 pred just before curr pred T oury L

e |fitem is absent:
e curr has higher key

e pred just before curr

Optimistic Locking

e Remove: Validation and deletion phase

try A
if (validate (pred, curr) Check for
if (curr.key == key) { synchronization
pred.next = curr.next; problems
return true;

} else {
return false;

J

}
} finally f{

pred.unlock(); curr.unlock();

J
)}

Optimistic Locking

e |[imited hot-spots:
 Targets of add, remove, contains
e No contention on traversals

e Traversals are wait-free

Lazy LockKing

e Optimistic locking:
* Traverses list twice
e Contains locks
e |Lazy locking:
* Make validation simpler

By marking deleted nodes

Lazy LockKing

e Add to each node a Boolean marked field

* Traversals no longer need to validate that a node is
reachable:

e New Invariant:

 Every unmarked node is reachable

Lazy LockKing

e Contains:
e Just traverse the list, including nodes marked deleted

e |f the item is in the list and the node is not marked
deleted, then it is in the set

Lazy LockKing

e Lazy removal

(I [3> (e[3> >35>

Lazy LockKing

e Lazy removal

0 EDE/'@= di-

Present in list

Lazy LockKing

e Lazy removal

. E?D= di-

Logically deleted

Lazy LockKing

(I T 3=>{a 5, B, CINE

S

Physically deleted

Lazy LockKing

e Lazy removal

(T3> 3~Em, | [@=

S

Physically deleted

Lazy LockKing

e Why do we need to validate?

e Thread |l removes b

Lazy LockKing

e Thread 1 finds b

e Before

Lazy LockKing

hread 1 acquires the lock, another thread

logically and physically removes the predecessor

pred cur

l l

a | 0| =P b |1 | O—Pp|

Lazy LockKing

e Thread 1 now acquires the lock

Lazy LockKing

e Thread | marks b as deleted

pred cur

Lazy LockKing

 And then removes it physically

Lazy LockKing

e Another scenario:

e Thread | tries to remove C

~|1| @— a | 0| @e+—{ c [0 | O—>

Lazy LockKing

e Thread | finds them

Lazy LockKing

e But before locking, another thread adds a node b

pred cur

I l

—o |] | Op— g ()‘\& c | 0| @y oo

Lazy LockKing

e Thread | now locks

pred cur
| l
| 1| o——| a |0 0| er—>p

Lazy LockKing

 And virtually and physically removes node c

pred cur

I I

—o | 1| &—p a [0 |0 lc 1] o—>

() ()
8 7

Lazy LockKing

e Validation:
e Check that pred is not marked
e Check that curr is not marked

e Check that pred.next == curr

Lazy LockKing

e \alidation

private boolean
validate (Node pred, Node curr) {
return
'pred.marked &&
'curr.marked &&
pred.next == curr);

J

Lazy Locking

e Validation

private boolean
validate (Node pred, Node curr) {

return
predecessor not

I
'pbred.marked && _
lcurr.marked & logically deleted

pred.next == curr);

J

Lazy LockKing

e Validation

private boolean
validate (Node pred, Node curr) {
return
'pred.marked &&
'curr.marked &&
pred.next == curr);

J

current node not

logically deleted

Lazy Locking

e Validation

private boolean
validate (Node pred, Node curr) {
return
'pred.marked &&
'curr.marked &&
pred.next == curr);

J

predecessor still

predecessor

Lazy LockKing

e Removal

try {
pred.lock(); curr.lock();
1f (validate (pred, curr) {

1f (curr.key == key) {
curr.marked = true;
pred.next = curr.next;
return true;

} else {

return false;
bt} finally |
pred.unlock () ;
curr.unlock () ;

b1

Lazy LockKing

e Removal
try |
pred.lock(); curr.lock(); lock both nodes
1f (validate (pred, curr) {
1f (curr.key == key) {
curr.marked = true;
pred.next = curr.next;
return true;
} else {

return false;
bt} finally |
pred.unlock() ;
curr.unlock () ;

b

Lazy LockKing

e Removal
try |
pred.lock(); curr.lock();
1f (validate (pred, curr) { validate
1f (curr.key == key) {
curr.marked = true;
pred.next = curr.next;
return true;
} else {

return false;
bt} finally |
pred.unlock() ;
curr.unlock () ;

b

Lazy LockKing

e Removal

try {
pred.lock(); curr.lock();
1f (validate (pred, curr) {

if (curr.key == key) key found
curr.marked = true;

pred.next = curr.next;

return true;

} else {

return false;
bt} finally |
pred.unlock() ;
curr.unlock () ;

b

Lazy LockKing

e Removal

try {
pred.lock(); curr.lock();
1f (validate (pred, curr) {

1f (curr.key == key) {

curr.marked = true; logic delete
pred.next = curr.next;

return true;

} else {

return false;
bt} finally |
pred.unlock() ;
curr.unlock () ;

b

Lazy LockKing

e Removal

try {
pred.lock(); curr.lock();
1f (validate (pred, curr) {

1f (curr.key == key) {

curr.marked = true; logic delete
pred.next = curr.next;

return true;

} else {

return false;
bt} finally |
pred.unlock() ;
curr.unlock () ;

b

Lazy LockKing

e Removal

try {
pred.lock(); curr.lock();
1f (validate (pred, curr) {

1f (curr.key == key) {

curr.marked = true;

pred.next = curr.next; physical delete
return true;

} else {

return false;
bt} finally |
pred.unlock() ;
curr.unlock () ;

b

Lazy LockKing

e Removal

try {
pred.lock(); curr.lock();
1f (validate (pred, curr) {

1f (curr.key == key) {
curr.marked = true;
pred.next = curr.next;
return true;

} else {

return false;
bt} finally |
pred.unlock() ;
curr.unlock () ;

b

Lazy LockKing

e Containment

public boolean contalns(Item i1tem) {
int key = i1tem.hashCode () ;
Node curr = this.head;
while (curr.key < key) {
cCurr = curr.next;

J

return curr.key == key && !curr.marked;

Lazy LockKing

e Containment

public boolean contains (Item 1tem) ({
int key = i1tem.hashCode () ;
Node curr = this.head;
while (curr.key < key) {
cCurr = curr.next;

J

return curr.key == key && !curr.marked;

start at head

Lazy LockKing

e Containment

public boolean contains (Item 1tem) ({
int key = i1tem.hashCode () ;

Node curr = this.head; :

while (curr.key < key) f{ traverse list
curr = curr.next; without locking

J

return curr.key == kqy && !curr.marked;

Nodes might be

deleted

Lazy LockKing

e Containment

public boolean contains (Item 1tem) ({
int key = i1tem.hashCode () ;

Node curr = this.head;
while (curr.key < key) {
curr = curr.next;
}
return curr.key == key && !curr.marked;

Present and

undeleted?

Lazy LockKing

e Summary

>

(T T3> (c] [>T 3>d 3>e]

e Combine mark bit and list ordering

Lazy LockKing

e | azy adds and removes

e Wait-free contains

Lazy LockKing

e (Good:
e (Contains is wait-free

e Uncontended calls do not re-traverse

e Bad:

e Contended add / removes require re-traversion

CAS

e CAS instruction: Compare And Set
¢ Boolean register.CAS (expected, update)
e Atomic operation

e |[f register valueis equal to expected then its
value becomes update and returns true

e |[f register value is not equalto expected,
returns false, but does not change the value

CAS

e Example: Consensus protocol for n threads O, ..., n-1

e AtomicInteger class has a CAS method

class CASConsensus extends ConsensusProtocol {

private final int FIRST = -1;
private AtomicInteger r = new AtomicInteger (FIRST);
public Object decide (Object value) {

propose (value) ;

int 1 = ThreadID.get();

if (r.compareAndSet (FIRST, i)) // I won

return proposed[1l];
else // I lost
return proposed|[r.get ()],

CAS

class CASConsensus extends ConsensusProtocol {

private final int FIRST = -1;
private AtomicInteger r = new AtomicInteger (FIRST);
public Object decide (Object value) {

propose (value) ;

int 1 = ThreadID.get();

if (r.compareAndSet (FIRST, 1)) // I won

return proposedl[1l];
else // I lost
return proposed|[r.get()];

Load r with First

CAS

class CASConsensus extends ConsensusProtocol {
private final int FIRST = -1;
private AtomicInteger r = new AtomicInteger (FIRST);
public Object decide (Object value) {
propose (value) ;
int 1 = ThreadIDuget ()
if (r.compareAndSet (FIRST, i)) // I won

Each thread loads global

array proposed with a
value

CAS

class CASConsensus extends ConsensusProtocol {

private final int FIRST = -1;
private AtomicInteger r = new AtomicInteger (FIRST);
public Object decide (Object value) {

propose (value) ;

int 1 = ThreadID.get();

if (r.compareAndSet (FIRST, 1)) // I won

return proposedl[1l];
else // I lost
return proposed[r.get (N

Try whether there is still

the original value inr

CAS

class CASConsensus extends ConsensusProtocol {

private final int FIRST = -1;
private AtomicInteger r = new AtomicInteger (FIRST);
public Object decide (Object value) {

propose (value) ;

int 1 = ThreadID.get();

if (r.compareAndSet (FIRST, 1)) // I won

return proposedl[1l];
else // I lost
return proposed[r.get (N

If it is, exchange with

thread-number

CAS

class CASConsensus extends ConsensusProtocol {

private final int FIRST = -1;
private AtomicInteger r = new AtomicInteger (FIRST);
public Object decide (Object value) {

propose (value) ;

int 1 = ThreadID.get();

if (r.compareAndSet (FIRST, 1)) // I won

return proposedl[1l];
else // I lost
return proposed[r.get (N

This happens for only
one thread, who gets to

update the value of r
with its thread number

CAS

class CASConsensus extends ConsensusProtocol {

private final int FIRST = -1;
private AtomicInteger r = new AtomicInteger (FIRST);
public Object decide (Object value) {

propose (value) ;

int 1 = ThreadID.get();

if (r.compareAndSet (FIRST, 1)) // I won

return proposedl[1l];
else // I lost
return proposed[r.get (N

All other threads will find

the value different

CAS

class CASConsensus extends ConsensusProtocol ({

private final int FIRST = -1;
private AtomicInteger r = new AtomicInteger (FIRST);
public Object decide (Object value) {

propose (value) ;

int 1 = ThreadID.get();

if (r.compareAndSet (FIRST, 1)) // I won

return proposedl[1l];
else // I lost
return proposed|[r.get()];

All other threads will find the value
different:
The value is the number of the

winning thread
Therefore, they return its
proposed value

CAS

class CASConsensus extends ConsensusProtocol ({

private final int FIRST = -1;
private AtomicInteger r = new AtomicInteger (FIRST);
public Object decide (Object value) {

propose (value) ;

int 1 = ThreadID.get();

if (r.compareAndSet (FIRST, 1)) // I won

return proposedl[1l];
else // I lost
return proposed|[r.&t ()],

The one and only thread to win

will get its value as the consensus

CAS

* Aregister with CAS and get has an infinite consensus
number

Bit-Stealing

e C++ has pointers
 Jo atomically mark a pointer with a boolean value:

e Observe that pointers to objects never have the least
significant two bit set

e |n fact, alignment is usually in multiples of 16, so 4
least significant bits are zero

e Use one of these bits as a marker

e (Can still recover the original pointer

Bit-Stealing

* In Java:
® java.util.concurrent.atomic has an object
e AtomicMarkableReference<T>:
» Reference to an object of type T
 Boolean mark field

 Can be updated atomically together or individually

Bit Stealing

e |nterface:

public boolean compareAndSet (T expectedReference,
T newReference,
boolean expectedMark,
boolean newMark) ;

public boolean attemptMark (T expectedReference,
boolean newMark) ;

public T get (boolean[] marked);

e returns the encapsulated reference and stores mark at
position O in the array

Lock-free Lists

e First attempt:

 Use compareAndSet to change the next field

e Example:

) — o0 ———» o — | o———Pp| oo

e Thread |: add b

e Thread ll: remove a

Lock-free Lists

e Thread A applies CAS to a.next
e Thread B applies CAS to -.next

 Both succeed regardless of who comes first:

Lock-free Lists

 We must prevent manipulation of a removed node!

Lock-free Lists

Lock-free Lists

Lock-free Lists

Lock-free Lists

Lock-free Lists

Lock-free Lists

Lock-free Lists

Lock-free Lists

Lock-free Lists

Lock-free Lists

Lock-free Lists

Lock-free Lists

