
Linked List

Set Data Structure
• Operations:

• Add an element

• Remove an element

• Answer question about containment

• Implemented as a singly linked list

Linked List
• Adding threads should not lower throughput

• Contention effects

• Fixed by queue locks

• Should increase throughput

• Not possible if inherently sequential

• But surprising things are parallelizable

Linked List
• Coarse-Grained synchronization

• Each method locks the object

• Avoid contention using queue locks

• Easy to reason about

• But "Sequential Bottleneck"

• Threads stand in line

• So adding more threads does not improve
throughput

• In fact, could make things worse

Linked List
• Instead of using a single lock:

• Use fine-grained synchronization

• Split object into

• independently synchronized components

• Methods conflict only:

• When they access the same component at the
same time

Linked List
• Use optimistic synchronization

• Search without locking

• If you find it, lock, and check that it did not change

• In general, optimistic synchronization

• Is good when it works

• But mistakes are expensive

Linked List
• Lazy synchronization

• Postpone hard work

• Removing components is tricky

• So use logical removal:

• Mark the component as deleted instead of
deleting it

• Followed by physical removal:

• Delete the component

Linked List
• Lock-free Synchronization

• Don't use locks at all

• Use Compare-And-Set and relatives

• Needs no scheduler assumptions or support

• But is complex and can have high overhead

Linked List
• Singly linked list:

• Use a List Node class

public class Node {
 public T item;
 public int key;
 public volatile Node next;

Linked List
• Use Sentinel Nodes

Linked List
• Operations involve pointer chasing

Linked List

Coarse Grained Locking
• Coarse Grained Locking

• Single hotspot + bottleneck leads to convoys

Fine Grained Locking
• Fine-grained locking

• Requires care

• Split object into pieces

• Each piece has its own lock

• Methods that work on disjoint set of pieces do not
exclude each other

Fine Grained Locking
• Hand-over-Hand locking

Fine Grained Locking
• Hand-over-Hand locking

Fine Grained Locking
• Hand-over-Hand locking

Fine Grained Locking
• Hand-over-Hand locking

Fine Grained Locking
• Implementing remove

• Problem arise when other threads try to access an
adjacent node

Fine Grained Locking
• Hand-to-hand locking assures that a thread that tries a

competitive operation has a lock conflict

•

Fine Grained Locking

Fine Grained Locking

Fine Grained Locking
• Why lock the victim node?

Fine Grained Locking
• Another thread might want to add after b

• Homework 3

Fine Grained Locking
• Concurrent Removal

Fine Grained Locking
• Concurrent Removal

Fine Grained Locking
• Concurrent Removal

Fine Grained Locking
• Concurrent Removal

Fine Grained Locking
• Concurrent Removal

Fine Grained Locking
• Concurrent Removal

Fine Grained Locking
• Concurrent Removal

Fine Grained Locking
• Concurrent Removal

Fine Grained Locking
• Concurrent Removal

Fine Grained Locking
• Concurrent removal undoes one threads work

Fine Grained Locking
• Node c has not been removed

Fine Grained Locking
• Problem

• To delete node C, we swing its predecessor's next-field
to its successor

• But someone could create another pointer to C

Fine Grained Locking

Fine Grained Locking

Fine Grained Locking

Fine Grained Locking

Fine Grained Locking

Fine Grained Locking

Fine Grained Locking

Fine Grained Locking

Fine Grained Locking

Fine Grained Locking

Fine Grained Locking

Fine Grained Locking

Fine Grained Locking

Fine Grained Locking

Fine Grained Locking

Fine Grained Locking
public boolean remove(T item) {
 int key = item.hashCode();
 Node pred, curr;
 try {
 …
 } finally {
 curr.unlock();
 pred.unlock();
 }}

Key used to
order nodes

Fine Grained Locking
public boolean remove(T item) {
 int key = item.hashCode();
 Node pred, curr;
 try {
 …
 } finally {
 curr.unlock();
 pred.unlock();
 }}

Precursor and
current node

Fine Grained Locking
public boolean remove(T item) {
 int key = item.hashCode();
 Node pred, curr;
 try {
 …
 } finally {
 curr.unlock();
 pred.unlock();
 }}

Make sure
locks are freed

Fine Grained Locking
public boolean remove(T item) {
 int key = item.hashCode();
 Node pred, curr;
 try {
 …
 } finally {
 curr.unlock();
 pred.unlock();
 }}

Everything else

Fine Grained Locking
• Remove

try {
 pred = head;
 pred.lock();
 curr = pred.next;
 curr.lock();
 …
} finally { … }

Fine Grained Locking

try {
 pred = head;
 pred.lock();
 curr = pred.next;
 curr.lock();
 …
} finally { … }

Fine Grained Locking

try {
 pred = head;
 pred.lock();
 curr = pred.next;
 curr.lock();
 …
} finally { … }

Fine Grained Locking
while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Searching

Fine Grained Locking
while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Loop Invariant:
At start of while,
pred and curr are

locked

Fine Grained Locking
while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Loop Invariant:
At start of while,
pred and curr are

locked

Fine Grained Locking
while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

If item found,
delete node

Fine Grained Locking
while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Unlock
predecessor

Fine Grained Locking
while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Move right

Fine Grained Locking
while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Acquire next node

Fine Grained Locking
while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Acquire next node

Fine Grained Locking
while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Lock next node

Fine Grained Locking
while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Loop invariant
restored

Fine Grained Locking
while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Otherwise, return
false

Fine Grained Locking
• Execution history is Linearizable:

• Equivalent to a sequential history

• To argue something is linearizable:

• Can find "linearization points"

Fine Grained Locking
• Invariants:

• All items in the set are in nodes reachable from head

• All nodes are arranged in order

• We show that invariants are maintained by methods

while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Fine Grained Locking
• Why remove is linearizable

• Case 1: Item is in the list

while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Fine Grained Locking
• Why remove is linearizable

• Case 1: Item is in the list

• Then pred.next = curr.next
is a linearization point

• Invariants:

• pred is reachable from head

• curr is pred.next

• curr is in the set

• No other thread can access either
pred or curr during assignment

while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Fine Grained Locking
• Why remove is linearizable

• After removal:

• curr is no longer
reachable: item is
removed

• pred is reachable from
head

• old curr.next is reachable

• for all other nodes,
reachability has not
changed

while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Fine Grained Locking
• Why remove is linearizable

• Case 2: Item is not in the
list

•

while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Fine Grained Locking
• Why remove is linearizable

• Case 2: Item is not in the
list

• return false is
linearization point

while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Fine Grained Locking
• Why remove is linearizable

• Invariants are not
changed

• Need to show
correctness:

• Use induction to argue
that item is not in the
set

Optimistic Locking
• Only lock when you are ready

• Traverse list to find insertion / removal point

• Then lock needed nodes after validation!

Optimistic Locking

Optimistic Locking

Optimistic Locking
• Why we need validation

d

-∞ a b c e ∞

Thread 1: Add d

-∞ a b c e ∞

Thread 1: Add d, locks found nodes

! !

-∞ a b c e ∞

Threads: Delete b and c

-∞ a

b c

e ∞

Thread 1: Add d, locks found nodes

! !

Optimistic Locking
• What can go wrong?

• Nodes might no longer be there

Optimistic Locking

Optimistic Locking

Optimistic Locking

Optimistic Locking

Need to validate

Optimistic Locking
• What else can go wrong?

Optimistic Locking

Optimistic Locking

Optimistic Locking

Optimistic Locking
• Need to validate while holding locks

Optimistic Locking
• Need to validate while holding locks

• Linearization point

Optimistic Locking
• Optimistic locking:

• Search without acquiring locks

• Lock the nodes found

• Confirm that locked nodes are correct

• For inserting a node between Node A and Node B:

• Node A is reachable from head

• Node B is still the successor of Node A

Optimistic Locking
• Validation:

• Reachability of Node A

• No operation changes reachability with exception of
the Node being removed

• Verify that!

• Therefore: we do not need locks to verify reachability

Optimistic Locking
private boolean
 validate(Node pred,
 Node curry) {
 Node node = head;
 while (node.key <= pred.key) {
 if (node == pred)
 return pred.next == curr;
 node = node.next;
 }
 return false;
}

Optimistic Locking
• Addition: Phase 1: searching

public boolean add(T item) {
 int key = item.hashCode();
 while (true) {
 Node pred = head;
 Node curr = pred.next;
 while (curr.key <= key) {
 pred = curr; curr = curr.next;

Optimistic Locking
• Addition: Phase 2: Locking

pred.lock();
curr.lock();

Optimistic Locking
• Addition: Phase 3: Validation and Update
try {
 if (validate(pred, curr)) {
 if (curr.key == key) {
 return false;
 } else {
 Node node = new Node(item);
 node.next = curr;
 pred.next = node;
 return true;
 }
 }
} finally {
 pred.unlock();
 curr.unlock();
}

Optimistic Locking
• Remove

public boolean remove(T item) {
 int key = item.hashCode();
 while(true){
 Node pred = head;
 Node curr = pred.next;
 while (curr.key < key) {
 pred = curr;
 curr = curr.next;
 }

Optimistic Locking
• Remove: Lock phase

pred.lock();
curr.lock();

Optimistic Locking
• Remove: Validation and deletion phase

try {
 if (validate(pred, curr)) {
 if (curr.key == key) {
 pred.next = curr.next;
 return true;
 } else {
 return false;
 }
}
} finally {
 pred.unlock(); curr.unlock();
 }
}}

Optimistic Locking
• On exit from loop and in the absence of

synchronization problems:

• If item is present:

• curr holds item

• pred just before curr

• If item is absent:

• curr has higher key

• pred just before curr

public boolean remove(T item) {
 int key = item.hashCode();
 while(true){
 Node pred = head;
 Node curr = pred.next;
 while (curr.key < key) {
 pred = curr;
 curr = curr.next;
 }

Optimistic Locking
• Remove: Validation and deletion phase

try {
 if (validate(pred, curr)) {
 if (curr.key == key) {
 pred.next = curr.next;
 return true;
 } else {
 return false;
 }
}
} finally {
 pred.unlock(); curr.unlock();
 }
}}

Check for
synchronization

problems

Optimistic Locking
• Limited hot-spots:

• Targets of add, remove, contains

• No contention on traversals

• Traversals are wait-free

Lazy Locking
• Optimistic locking:

• Traverses list twice

• Contains locks

• Lazy locking:

• Make validation simpler

• By marking deleted nodes

Lazy Locking
• Add to each node a Boolean marked field

• Traversals no longer need to validate that a node is
reachable:

• New invariant:

• Every unmarked node is reachable

Lazy Locking
• Contains:

• Just traverse the list, including nodes marked deleted

• If the item is in the list and the node is not marked
deleted, then it is in the set

Lazy Locking
• Lazy removal

Lazy Locking
• Lazy removal

Lazy Locking
• Lazy removal

Lazy Locking

Lazy Locking
• Lazy removal

Lazy Locking
• Why do we need to validate?

• Thread I removes b

-∞ 1 a 1 b 1 ∞ 1

Lazy Locking
• Thread 1 finds b

-∞ 1 a 1 b 1 ∞ 1

pred cur

Lazy Locking
• Before Thread 1 acquires the lock, another thread

logically and physically removes the predecessor

-∞ 1 a 0 b 1 ∞ 1

pred cur

Lazy Locking
• Thread 1 now acquires the lock

-∞ 1 a 0 b 1 ∞ 1

! !

pred cur

Lazy Locking
• Thread I marks b as deleted

-∞ 1 a 0 b 0 ∞ 1

! !

pred cur

Lazy Locking
• And then removes it physically

-∞ 1 a 0 b 0 ∞ 1

! !

pred cur

Lazy Locking
• Another scenario:

• Thread I tries to remove c

-∞ 1 a 0 c 0 ∞ 1

Lazy Locking
• Thread I finds them

-∞ 1 a 0 c 0 ∞ 1

pred cur

Lazy Locking
• But before locking, another thread adds a node b

-∞ 1 a 0 c 0 ∞ 1

pred cur

b 0

Lazy Locking
• Thread I now locks

-∞ 1 a 0 c 0 ∞ 1

! !

pred cur

b 0

Lazy Locking
• And virtually and physically removes node c

-∞ 1 a 0 c 1 ∞ 1

! !

pred cur

b 0

Lazy Locking
• Validation:

• Check that pred is not marked

• Check that curr is not marked

• Check that pred.next == curr

Lazy Locking
• Validation

private boolean
 validate(Node pred, Node curr) {
 return
 !pred.marked &&
 !curr.marked &&
 pred.next == curr);
 }

Lazy Locking
• Validation

private boolean
 validate(Node pred, Node curr) {
 return
 !pred.marked &&
 !curr.marked &&
 pred.next == curr);
 }

predecessor not
logically deleted

Lazy Locking
• Validation

private boolean
 validate(Node pred, Node curr) {
 return
 !pred.marked &&
 !curr.marked &&
 pred.next == curr);
 }

current node not
logically deleted

Lazy Locking
• Validation

private boolean
 validate(Node pred, Node curr) {
 return
 !pred.marked &&
 !curr.marked &&
 pred.next == curr);
 }

predecessor still
predecessor

Lazy Locking
• Removal

try {
 pred.lock(); curr.lock();
 if (validate(pred,curr) {
 if (curr.key == key) {
 curr.marked = true;
 pred.next = curr.next;
 return true;
 } else {
 return false;
 }}} finally {
 pred.unlock();
 curr.unlock();
 }}}

Lazy Locking
• Removal

try {
 pred.lock(); curr.lock();
 if (validate(pred,curr) {
 if (curr.key == key) {
 curr.marked = true;
 pred.next = curr.next;
 return true;
 } else {
 return false;
 }}} finally {
 pred.unlock();
 curr.unlock();
 }}}

lock both nodes

Lazy Locking
• Removal

try {
 pred.lock(); curr.lock();
 if (validate(pred,curr) {
 if (curr.key == key) {
 curr.marked = true;
 pred.next = curr.next;
 return true;
 } else {
 return false;
 }}} finally {
 pred.unlock();
 curr.unlock();
 }}}

validate

Lazy Locking
• Removal

try {
 pred.lock(); curr.lock();
 if (validate(pred,curr) {
 if (curr.key == key) {
 curr.marked = true;
 pred.next = curr.next;
 return true;
 } else {
 return false;
 }}} finally {
 pred.unlock();
 curr.unlock();
 }}}

key found

Lazy Locking
• Removal

try {
 pred.lock(); curr.lock();
 if (validate(pred,curr) {
 if (curr.key == key) {
 curr.marked = true;
 pred.next = curr.next;
 return true;
 } else {
 return false;
 }}} finally {
 pred.unlock();
 curr.unlock();
 }}}

logic delete

Lazy Locking
• Removal

try {
 pred.lock(); curr.lock();
 if (validate(pred,curr) {
 if (curr.key == key) {
 curr.marked = true;
 pred.next = curr.next;
 return true;
 } else {
 return false;
 }}} finally {
 pred.unlock();
 curr.unlock();
 }}}

logic delete

Lazy Locking
• Removal

try {
 pred.lock(); curr.lock();
 if (validate(pred,curr) {
 if (curr.key == key) {
 curr.marked = true;
 pred.next = curr.next;
 return true;
 } else {
 return false;
 }}} finally {
 pred.unlock();
 curr.unlock();
 }}}

physical delete

Lazy Locking
• Removal

try {
 pred.lock(); curr.lock();
 if (validate(pred,curr) {
 if (curr.key == key) {
 curr.marked = true;
 pred.next = curr.next;
 return true;
 } else {
 return false;
 }}} finally {
 pred.unlock();
 curr.unlock();
 }}}

done

Lazy Locking
• Containment

public boolean contains(Item item) {
 int key = item.hashCode();
 Node curr = this.head;
 while (curr.key < key) {
 curr = curr.next;
 }
 return curr.key == key && !curr.marked;
}

Lazy Locking
• Containment

public boolean contains(Item item) {
 int key = item.hashCode();
 Node curr = this.head;
 while (curr.key < key) {
 curr = curr.next;
 }
 return curr.key == key && !curr.marked;
}

start at head

Lazy Locking
• Containment

public boolean contains(Item item) {
 int key = item.hashCode();
 Node curr = this.head;
 while (curr.key < key) {
 curr = curr.next;
 }
 return curr.key == key && !curr.marked;
}

traverse list
without locking

Nodes might be
deleted

Lazy Locking
• Containment

public boolean contains(Item item) {
 int key = item.hashCode();
 Node curr = this.head;
 while (curr.key < key) {
 curr = curr.next;
 }
 return curr.key == key && !curr.marked;
}

Present and
undeleted?

Lazy Locking
• Summary

• Combine mark bit and list ordering

Lazy Locking
• Lazy adds and removes

• Wait-free contains

Lazy Locking
• Good:

• Contains is wait-free

• Uncontended calls do not re-traverse

• Bad:

• Contended add / removes require re-traversion

CAS
• CAS instruction: Compare And Set

• Boolean register.CAS(expected, update)

• Atomic operation

• If register value is equal to expected then its
value becomes update and returns true

• If register value is not equal to expected,
returns false, but does not change the value

CAS
• Example: Consensus protocol for n threads 0, …, n-1

• AtomicInteger class has a CAS method

class CASConsensus extends ConsensusProtocol {
private final int FIRST = -1;
private AtomicInteger r = new AtomicInteger(FIRST);
public Object decide(Object value) {
 propose(value);
 int i = ThreadID.get();
 if (r.compareAndSet(FIRST, i)) // I won

 return proposed[i];
else // I lost

 return proposed[r.get()];
 }
}

CAS
class CASConsensus extends ConsensusProtocol {

private final int FIRST = -1;
private AtomicInteger r = new AtomicInteger(FIRST);
public Object decide(Object value) {
 propose(value);
 int i = ThreadID.get();
 if (r.compareAndSet(FIRST, i)) // I won

 return proposed[i];
else // I lost

 return proposed[r.get()];
 }
}

Load r with First

CAS
class CASConsensus extends ConsensusProtocol {

private final int FIRST = -1;
private AtomicInteger r = new AtomicInteger(FIRST);
public Object decide(Object value) {
 propose(value);
 int i = ThreadID.get();
 if (r.compareAndSet(FIRST, i)) // I won

 return proposed[i];
else // I lost

 return proposed[r.get()];
 }
}

Each thread loads global
array proposed with a

value

CAS
class CASConsensus extends ConsensusProtocol {

private final int FIRST = -1;
private AtomicInteger r = new AtomicInteger(FIRST);
public Object decide(Object value) {
 propose(value);
 int i = ThreadID.get();
 if (r.compareAndSet(FIRST, i)) // I won

 return proposed[i];
else // I lost

 return proposed[r.get()];
 }
}

Try whether there is still
the original value in r

CAS
class CASConsensus extends ConsensusProtocol {

private final int FIRST = -1;
private AtomicInteger r = new AtomicInteger(FIRST);
public Object decide(Object value) {
 propose(value);
 int i = ThreadID.get();
 if (r.compareAndSet(FIRST, i)) // I won

 return proposed[i];
else // I lost

 return proposed[r.get()];
 }
}

If it is, exchange with
thread-number

CAS
class CASConsensus extends ConsensusProtocol {

private final int FIRST = -1;
private AtomicInteger r = new AtomicInteger(FIRST);
public Object decide(Object value) {
 propose(value);
 int i = ThreadID.get();
 if (r.compareAndSet(FIRST, i)) // I won

 return proposed[i];
else // I lost

 return proposed[r.get()];
 }
}

This happens for only
one thread, who gets to

update the value of r
with its thread number

CAS
class CASConsensus extends ConsensusProtocol {

private final int FIRST = -1;
private AtomicInteger r = new AtomicInteger(FIRST);
public Object decide(Object value) {
 propose(value);
 int i = ThreadID.get();
 if (r.compareAndSet(FIRST, i)) // I won

 return proposed[i];
else // I lost

 return proposed[r.get()];
 }
}

All other threads will find
the value different

CAS
class CASConsensus extends ConsensusProtocol {

private final int FIRST = -1;
private AtomicInteger r = new AtomicInteger(FIRST);
public Object decide(Object value) {
 propose(value);
 int i = ThreadID.get();
 if (r.compareAndSet(FIRST, i)) // I won

 return proposed[i];
else // I lost

 return proposed[r.get()];
 }
}

All other threads will find the value
different:

The value is the number of the
winning thread

Therefore, they return its
proposed value

CAS
class CASConsensus extends ConsensusProtocol {

private final int FIRST = -1;
private AtomicInteger r = new AtomicInteger(FIRST);
public Object decide(Object value) {
 propose(value);
 int i = ThreadID.get();
 if (r.compareAndSet(FIRST, i)) // I won

 return proposed[i];
else // I lost

 return proposed[r.get()];
 }
}

The one and only thread to win
will get its value as the consensus

CAS
• A register with CAS and get has an infinite consensus

number

Bit-Stealing
• C++ has pointers

• To atomically mark a pointer with a boolean value:

• Observe that pointers to objects never have the least
significant two bit set

• In fact, alignment is usually in multiples of 16, so 4
least significant bits are zero

• Use one of these bits as a marker

• Can still recover the original pointer

Bit-Stealing
• In Java:

• java.util.concurrent.atomic has an object

• AtomicMarkableReference<T>:

• Reference to an object of type T

• Boolean mark field

• Can be updated atomically together or individually

Bit Stealing
• Interface:

• returns the encapsulated reference and stores mark at
position 0 in the array

public boolean compareAndSet(T expectedReference,
 T newReference,
 boolean expectedMark,
 boolean newMark);

public boolean attemptMark(T expectedReference,
 boolean newMark);

public T get(boolean[] marked);

Lock-free Lists
• First attempt:

• Use compareAndSet to change the next field

• Example:

•

• Thread I: add b

• Thread II: remove a

-∞ a c ∞

Lock-free Lists
• Thread A applies CAS to a.next

• Thread B applies CAS to -∞.next

• Both succeed regardless of who comes first:

-∞ a c ∞

b

B

A A

Lock-free Lists

• We must prevent manipulation of a removed node!

-∞ a c ∞

b

B

A A

Lock-free Lists

Lock-free Lists

Lock-free Lists

Lock-free Lists

Lock-free Lists

Lock-free Lists

Lock-free Lists

Lock-free Lists

Lock-free Lists

Lock-free Lists

Lock-free Lists

Lock-free Lists

