Concurrent Data
Structures

Thomas Schwarz, SJ

B-tree Locking

 Two threads working on a B-tree can interfere with each
other if at least one changes the tree structure

e Thread 1: Look-up c
e Thread 2: insert k

Oxaa34

0x135e 0x5421

oD oD

B-tree Locking

Thread 1 accesses Node at Oxaa34
Thread 1 accesses Node at Ox135e
Thread 2 accesses Node at Oxaa34 l Oxaa34

Thread 2 accesses Node at Oxaa34

Thread 2 creates a new Node 0x135¢
0xb341 C e D

Thread 2 inserts g into Node Oxaa34

0x5421

Thread 2 removes g from Node
Ox135e

B-tree Locking

e Thread 1 cannot find g in Node
0x135e and returns

e Thread 2 inserts k into Node
Oxb341

e Thread 2 returns

B-tree Locking

 B-tree locking for disks and solid state:
 Only complete blocks can be written
e B-tree locking for main memory

e Can lock parts of a node

B-tree Locking

e Complete locking:

* All readers and updaters locks the root
* No concurrency possible

 Top-down locking

* Pure reader: Starting with root, lock node, identify
child, acquire child node, release parent node

e Updater: Starting with root: lock node, identify child,
acquire child node, until done. Then release all locks.

B-tree Locking

* Improving top-down locking
e Safe node:
* A node that the updater is never going to change

e Updater can unlock all nodes above the safe node

B-tree Locking

* When is a node safe?
* |nsert operation:
* A node can change by a rotation
* A node can change by splitting
* |In both cases:

e Parent of a node with overflow potential can
change

B-tree Locking

* When is a node safe?
* Deletion
* A node can change by rotation
* A node can change by merging

* |n both cases, parent of a node with potential
underflow can change

B-1Tree Locking Protocols

* Use different types of locks

Mode S IX SIX X

e An X-lock is exclusive

* An S-lock prevents other threads to get a higher class
lock

B-1Tree Locking Protocols

* | ock-coupling for top-down algorithms

* Request a lock on an index page while holding a lock
on the page's parent

e Check that new page is safe

* Release lock on parent

B-1Tree Locking Protocols

e Sama 76:

e All operations get an X (exclusive lock) on root and
lock-couple their way to a leaf

B-1Tree Locking Protocols

e Bayer-Schkolnick 1977
e Uses a B+ tree: all data is in the leaves

e Searches get an S-lock on the root and lock-couple to
the leaf using S-locks

e B-Xalgorithm:

 Updates get an X-lock on the root and lock-couple
to the leaf

 Excludes readers from parts of the tree not in the
scope of the update

B-1Tree Locking Protocols

e B-SIX algorithm
* Updates lock-couple with SIX locks
* This allows readers to get S-locks on these nodes

* Prevents updaters to interfere with each other as SIX locks are
Incompatible with each other

 Updater when reaching a leaf have to convert the SIX locks to X
locks

* This separates readers and the updater
e Updater cannot get an X-lock with an S-lock by another thread

* Readers cannot get an S-lock with an X-lock by another thread

B-1Tree Locking Protocols

e B-X and B-SIX still make updaters compete a higher
nodes

e B-OPT: updaters take an IX lock on root and then IX-lock-
couple to leaf

 Take X-lock on leaf
e |f leaf is safe, operations succeed
 Otherwise:

 Release X-lock on leaf

e Default to B-SIX

B-1Tree Locking Protocols

 Jop-down algorithms
 Updaters perform preparatory splits and merges
* |f inserter encounters a full node during descent:
e Splits the node

* |f deleter encounters a node with one entry, merge with
sibling.

* Now leaf level insertion / deletion know that the parent is
always safe

B-1Tree Locking Protocols

e TD-X
 Updater gets an X lock on the root
| ock-couples to an X lock to the leaf
» Before releasing the lock on the parent:
* make split / merge

 Readers use S-lock coupling

B-1Tree Locking Protocols

e TD-SIX
e Updater gets SIX locks

e Converts to X locks only if a split or merge is actually
necessary

B-1Tree Locking Protocols

e TD-OPT
 Updaters make an optimistic first pass
e Use S-locks lock-coupling from root to leaf

e |f the leaf is unsafe, update to X-locks

B-tree Locking

e B-link trees: (Yao-Lehman)
o At all levels:

 Add a link to the right neighbor (can be null)

C 2
.& -2
O D> o D > D> D

B-tree Locking

e B-link trees:

 Add a high key to each node: The first key of the
neighbor to the right

e New Invariant:

 \We can find a record by following the link from the
father OR from the left neighbor

B-tree Locking

e B-link tree
* When a node splits:
 Link is introduced when nodes are split

* The new link makes the pair of nodes functionally
behave as one node

 Even before other links are updated

B-tree Locking

e B-link tree

n ere

B-tree Locking

e B-link tree

& |
Behaves as one node

B-tree Locking

e B-link tree

B-tree Locking

e B-link tree

B-tree Locking

e B-link tree

-

B-tree Locking

e B-link tree

Create new right neighbor with link

as——

B-tree Locking

e B-link tree

Move contents into new node

auvay

B-tree Locking

e B-link tree

Update Parent

B-tree Locking

e B-link tree
e Claim:
 As long as all of these updates are atomic:
* A reader can always find the right path
e |dea of Proof:

 Look at changes in reachability after each operation

B-tree Locking

e B-link tree
* No dead-locks
* |nserters can only acquire locks on nodes in order
* Nodel < Node2 if
* Node1 has less distance from root than Node2
e OR

e Node2 can be reached from Node1 through
links

B-tree Locking

e B-link tree
e Livelock
* |ivelocks are possible:

e A bunch of inserters insert new links whenever a
given reader accesses a node

B-tree Locking

e B-link tree
e Deletion:
e Just allow nodes to have less than k children

e Do not restructure

B-1Tree Locking Protocols

 |Lehman Yao algorithm
e Reader descends the tree using S locks

e Each page searched is either the child or the right sibling of
the current page

 Parent lock is released before the lock on the next page is
acquired

 Updaters behave the same way
e Once reaching leaf, update their lock to an X-lock

e Use link chasing with X-lock to find the right node

e This still has problems, look at the linked paper.

B-tree for Flash

* Problem:
* Any change to a node results in a page write

e Some writes propagate

B-tree for Flash

e Wu, Chang, Kuo: BFTL

* Add alog page to each node
 |Log contains changes
| og is contained in RAM and mirrored to Flash

* Needs an Node Translation Table (NTT) to find log
entries for a given node

B-tree for Flash

 FlashDB
 Uses also logs for each tree node

* Distinguishes between mainly read nodes (kept in
Flash) and often-written nodes (kept in RAM)

B-tree for Flash

* In Page Logging B+ tree (IPL)

 (Colocate nodes and their logs in the same erase unit

Log Structured Merge Trees

e Create two (or more trees)
* |nsert new records into the CO tree
e Keep CO in memory

 Log updates in storage

C1 tree Co tree

N

Disk Memory

Log Structured Merge Trees

e Deletes:
e Create tombstone records
o Seeks:

e Seek both trees

Log Structured Merge Trees

* Whenever CO becomes to big:
e Create a new CO

e Merge old CO and C1

e Both are now static

CK tree Coe C1 tree Co tree

/\MG ’“%e/\me—'ge

| | |
| Disk ‘Memory '

Log Structured Merge Trees

 Jo allow updates to values:

e Use a version number

