
Concurrent Data 
Structures
Thomas Schwarz, SJ



B-tree Locking
• Two threads working on a B-tree can interfere with each 

other if at least one changes the tree structure


• Thread 1: Look-up c


• Thread 2: insert k

c, g

m

n

0xaa34

0x135e 0x5421



B-tree Locking
• Thread 1 accesses Node at 0xaa34


• Thread 1 accesses Node at 0x135e


• Thread 2 accesses Node at 0xaa34


• Thread 2 accesses Node at 0xaa34


• Thread 2 creates a new Node 
0xb341


• Thread 2 inserts g into Node 0xaa34


• Thread 2 removes g from Node 
0x135e

c

g, m

n

0xaa34

0x135e 0x54210xb341



B-tree Locking
• Thread 1 cannot find g in Node 

0x135e and returns


• Thread 2 inserts k into Node 
0xb341


• Thread 2 returns
c

g, m

n

0xaa34

0x135e 0x5421

k

0xb341



B-tree Locking
• B-tree locking for disks and solid state:


• Only complete blocks can be written


• B-tree locking for main memory


• Can lock parts of a node



B-tree Locking
• Complete locking:


• All readers and updaters locks the root


• No concurrency possible


• Top-down locking


• Pure reader: Starting with root, lock node, identify 
child, acquire child node, release parent node


• Updater: Starting with root: lock node, identify child, 
acquire child node, until done. Then release all locks. 



B-tree Locking
• Improving top-down locking


• Safe node:


• A node that the updater is never going to change


• Updater can unlock all nodes above the safe node



B-tree Locking
• When is a node safe?


• Insert operation:


• A node can change by a rotation


• A node can change by splitting


• In both cases:


• Parent of a node with overflow potential can 
change



B-tree Locking
• When is a node safe?


• Deletion


• A node can change by rotation


• A node can change by merging


• In both cases, parent of a node with potential 
underflow can change



B-Tree Locking Protocols
• Use different types of locks


• An X-lock is exclusive


• An S-lock prevents other threads to get a higher class 
lock

Mode S IX SIX X
S ✔ ✔ ✔

IX ✔ ✔

SIX ✔

X



B-Tree Locking Protocols
• Lock-coupling for top-down algorithms


• Request a lock on an index page while holding a lock 
on the page's parent


• Check that new page is safe


• Release lock on parent



B-Tree Locking Protocols
• Sama 76: 


• All operations get an X (exclusive lock) on root and 
lock-couple their way to a leaf



B-Tree Locking Protocols
• Bayer-Schkolnick 1977


• Uses a B+ tree: all data is in the leaves


• Searches get an S-lock on the root and lock-couple to 
the leaf using S-locks


• B-X algorithm:


• Updates get an X-lock on the root and lock-couple 
to the leaf


• Excludes readers from parts of the tree not in the 
scope of the update



B-Tree Locking Protocols
• B-SIX algorithm


• Updates lock-couple with SIX locks


• This allows readers to get S-locks on these nodes


• Prevents updaters to interfere with each other as SIX locks are 
incompatible with each other


• Updater when reaching a leaf have to convert the SIX locks to X 
locks


• This separates readers and the updater


• Updater cannot get an X-lock with an S-lock by another thread


• Readers cannot get an S-lock with an X-lock by another thread



B-Tree Locking Protocols
• B-X and B-SIX still make updaters compete a higher 

nodes


• B-OPT: updaters take an IX lock on root and then IX-lock-
couple to leaf


• Take X-lock on leaf


• If leaf is safe, operations succeed


• Otherwise:


• Release X-lock on leaf


• Default to B-SIX



B-Tree Locking Protocols
• Top-down algorithms


• Updaters perform preparatory splits and merges


• If inserter encounters a full node during descent:


• Splits the node 


• If deleter encounters a node with one entry, merge with 
sibling. 


• Now leaf level insertion / deletion know that the parent is 
always safe



B-Tree Locking Protocols
• TD-X


• Updater gets an X lock on the root


• Lock-couples to an X lock to the leaf


• Before releasing the lock on the parent:


• make split / merge


• Readers use S-lock coupling



B-Tree Locking Protocols
• TD-SIX


• Updater gets SIX locks


• Converts to X locks only if a split or merge is actually 
necessary



B-Tree Locking Protocols
• TD-OPT


• Updaters make an optimistic first pass


• Use S-locks lock-coupling from root to leaf


• If the leaf is unsafe, update to X-locks



B-tree Locking
• B-link trees: (Yao-Lehman)


• At all levels:


• Add a link to the right neighbor (can be null)



B-tree Locking
• B-link trees:


• Add a high key to each node: The first key of the 
neighbor to the right


• New invariant:


• We can find a record by following the link from the 
father OR from the left neighbor



B-tree Locking
• B-link tree


• When a node splits:


• Link is introduced when nodes are split


• The new link makes the pair of nodes functionally 
behave as one node


• Even before other links are updated



B-tree Locking
• B-link tree

Insert Here



B-tree Locking
• B-link tree

Behaves as one node



B-tree Locking
• B-link tree

Parent Link is Reset



B-tree Locking
• B-link tree

Parent needs to split



B-tree Locking
• B-link tree



B-tree Locking
• B-link tree

Create new right neighbor with link



B-tree Locking
• B-link tree

Move contents into new node



B-tree Locking
• B-link tree

Update Parent



B-tree Locking
• B-link tree


• Claim:


• As long as all of these updates are atomic:


• A reader can always find the right path


• Idea of Proof:


• Look at changes in reachability after each operation



B-tree Locking
• B-link tree


• No dead-locks


• Inserters can only acquire locks on nodes in order


• Node1 < Node2 if


• Node1 has less distance from root than Node2


• OR


• Node2 can be reached from Node1 through 
links



B-tree Locking
• B-link tree


• Livelock


• Livelocks are possible:


• A bunch of inserters insert new links whenever a 
given reader accesses a node



B-tree Locking
• B-link tree


• Deletion:


• Just allow nodes to have less than k children


• Do not restructure



B-Tree Locking Protocols
• Lehman Yao algorithm


• Reader descends the tree using S locks


• Each page searched is either the child or the right sibling of 
the current page


• Parent lock is released before the lock on the next page is 
acquired


• Updaters behave the same way


• Once reaching leaf, update their lock to an X-lock


• Use link chasing with X-lock to find the right node


• This still has problems, look at the linked paper.



B-tree for Flash
• Problem:


• Any change to a node results in a page write


• Some writes propagate



B-tree for Flash
• Wu, Chang, Kuo: BFTL


• Add a log page to each node 


• Log contains changes


• Log is contained in RAM and mirrored to Flash


• Needs an Node Translation Table (NTT) to find log 
entries for a given node



B-tree for Flash
• FlashDB


• Uses also logs for each tree node


• Distinguishes between mainly read nodes (kept in 
Flash) and often-written nodes (kept in RAM)



B-tree for Flash
• In Page Logging B+ tree (IPL)


• Colocate nodes and their logs in the same erase unit



Log Structured Merge Trees
• Create two (or more trees)


• Insert new records into the C0 tree 


• Keep C0 in memory


• Log updates in storage



Log Structured Merge Trees
• Deletes:


• Create tombstone records


• Seeks:


• Seek both trees



Log Structured Merge Trees
• Whenever C0 becomes to big:


• Create a new C0


• Merge old C0 and C1


• Both are now static



Log Structured Merge Trees
• To allow updates to values:


• Use a version number 


