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Graph Definition

e A graph has a set of vertices V and a set of edges.
e Directed edges are pairs (1, v) withu,v € V

e Undirected edges are two-sets {u, v} withu,v € V
* A graph with directed edges is called a directed graph
* A graph with undirected edges is just called a graph



Graph Definition

 Graphs are represented
by:

e drawing the vertices

as Sma” CerleS An undirected graph with 7

vertices and 7 edges

e drawing the edges as
edges

* Directed edges are
drawn as arrows

A directed graph



Graph Definition

e Computer scientist sometimes differ from mathematicians
iIn what is called a graph

* In Mathematics, a(n undirected) graph can
* Have only one edge at most between two vertices

e Cannot have an edge to the same vertex

>




Graph Definition

e Computer scientist sometimes differ from mathematicians
iIn what is called a graph

* |n Mathematics, a directed graph can
* Have only one edge at most between two vertices

e Cannot have an edge to the same vertex




Graph Definition

e Mathematicians call a graph that allows multiple edges
between the same pair of vertices

e a multigraph



Graph Representations

 Jo understand graphs, we can use:
* Thevisual representation =
e E.g. The neighbor graph .

 Take a political map



Graph Representations

e Examples:

e Place a vertexin ,

every entity
(state, not DDFF)

e Connect vertices
If the entities have
a common border




Graph Representations

e \ertices are stations

 Edges represent a
connection via
underground or light ralil

e This is multi-graph
because several edges
can connect a station
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Graph Definition

e Different visualizations can still give you the same graph,
as you can see from the examples below

ab, ac, bc, ce
cd, cf, de, df
ef, eqg, fg




Graph Definition

 Two graphs are isomorphic, if there is a renaming of the
vertices that converts one into the other and vice versa

e Mathematically, a renaming is a bijection

* These two do not look the same, but they are
isomorphic: a > b, b > c,c—>e,d— d, e —> a



Graph Definition

 Two graphs are isomorphic, if there is a renaming of the
vertices that converts one into the other and vice versa

G = (V, E) is isomorphic to G' = (V', E')
—
df: V — V'bijection : Vv,v, € V: (f(v)),f(»n) EL & (vi,»,) EE



Graph Definition

 Determining whether two graphs are isomorphic is a
known, difficult question

e Some results are easy, e.qg. vertices of the same rank
(the number of edges adjacent to a vertex) need to be
mapped to vertices of the same rank

* S0, these two graphs cannot be isomorphic




Graph Definition

These two graphs cannot be isomorphic

The left graph has two vertices of degree 2
The right graph has no vertices of degree 2

But the number of vertices and edges is equal



Graph Definitions

* There are a number of important properties of graphs

* No need to learn them by heart, the ones used in CS
will get repeated over and over again

e A path between two vertices u, w € V of a graph
G = (V,E) is alist of vertices
u="vyVy....V,_1,V, = W such that there is an
edge between all v; and v;_ 4

 Furthermore, no vertices can be repeated



Graph Definitions

e Example for a path:

e Has length 5 (humber of
edges)

e Example for a walk that is not
a path

e We visit the center vertex
twice



Graph Definitions

 For directed graphs, the paths need to follow the arrow



Graph Definitions

e A directed graph (digraph) is strongly connected if there is
a path from every vertex to every other vertex




Graph Definitions

* An undirected graph is connected if there is a path from
every vertex to every other vertex

* This is not a connected graph

N

) O

 But it consists of two connected components



Graph Definitions

* |nteresting question

* |s the friends graph on facebook connected

e The "friend" relation is mutual, so all users are vertices
and there is an edge if two users are in a friends-relation

* Probably not, because we signed up my mom on
facebook and she did not like it, so she is no longer

friends with anyone

e But how about "active users”

e Could there be a republican and a democratic facebook

* No, but maybe there are isolated groups



Euler Tours

 An Euler tour is a closed tour that traverses each edge of
the graph only once.

e Graphs with an Euler tour are called Eulerian

e Theorem: An undirected, connected graph is Eulerian if
each vertex has even degree.

 Recall: Degree is the number of edges of the vertex



Euler Tours

e Konigsberg bridge problem
e Konigsberg had seven bridges over the river Pregel

* |s it possible to have an afternoon walk crossing all bridges
exactly once

Ficure 98 Geographic Map:
The Kinigsberg Bridges.



Euler Tours

e Solved by Euler

* Translate into a multi-graph (multiple edges allowed)

Ficurs 98.° Geographic Map:
T'he Kintgsherg Bridges.



Euler Tours

e Actually, all edges have odd degree, so such a tour is not
possible

 Jo show that the theorem is correct:
e Euler tour exists implies all vertex degrees are even

 Because an Euler tour visits all edges and every time
it visits an edge, it needs to come and to go.




Euler Tours

e Other direction can be shown using Fleury's algorithm
e Key observation:
e |f we remove the edges from a closed tour
e (starts and ends at the same vertex)

* then in the remaining graph all vertices have still even

degree
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Euler Tours

 Fleury's algorithm:

Start at a node and walk anywhere, marking the edge
Leave the node that you arrived at

Continue until you can no longer find an unused edge
e At this point, you are back in the starting vertex

If any of the vertices visited has a unused edges, start
with that edge until you are back at that edge.

Splice the new circuit into the old one



Euler Tours

e Example

)

—

C



Euler Tours

e Start at a random vertex

)

—

C



Euler Tours




Euler Tours

 Check for vertices with unused edges and pick a random

one
o —( )
— 8 =) L
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Euler Tours

e Start out creating a random circuit of unused edges

]
= 8

24 3 2.2

IZ 02.10

[ 4
6 4

(g —{
N




Euler Tours

* Pick another vertex with unused edges

I 2 —( Y214 )

1 24 3 22
/R d
=8 7= r23=
6 4

(g —{
/




Euler Tours

e Start a new part of the circuit

(Yee{ 22— )y21{)

g1 .1 83 24 3 22
~ N N i
(/ 8 =7 ya3{)
8.4 6

< /\5 [
8.5
08.60 \_/

e Circuitsofar:1,2,2.1,2.2,2.3,2.4,3,4,5,6,7, 8, 8.1,
8.2,8.3,8.4, 8.5, 8.6,8.7, 8.8



Euler Tours

* |n the new circuit, there are still vertices without all edges

used.
o Qe O
g1 .1 83 24 3 22
~¢ N N d
(=8 y=7= ya3={
8.8 8.4 6 4
( N\ R 5 4
J
8.7 8.5
Q 8.6 \) \_/

e Circuitsofar:1,2,2.1,2.2,2.3,24,3,4,5,6, 7, 8, 8.1,
8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8



Euler Tours

e And after this, we are done

(Yee{ y2— y21{ )

g1 .1 813 24 3 22
2R '
(/ 8 =7 r23<{)
8.4 6 4
\ 7 R 4
< , 852\/ 353 ~{ ) 5 \\>
8.7 8.5.1 854 855 856

/\ P
C/ 8.6 8.5.8 \_J 8.5.7

e Circuitis: 1,2,2.1,2.2,2.3,2.4,3,4,5,6, 7, 8, 8.1, 8.2, 8.3,
8.4, 8.5, 8.5.1,8.5.2, 8.5.3, 8.5.4, 8.5.5, 8.5.6, 8.5.7, 8.5.8
8.6, 8.7, 8.8



Hamiltonian Circuit

e Similar question: Is there a circuit that goes through all
vertices




Hamiltonian Circuit

e Turns out to be very difficult

 Can be shown to not be decidable with a polynomial
time algorithm



Graph Definitions

e Distance in a graph:
* Length of the shortest path between two vertices

o(u,w) =min{n|3dvy =u,v,...v, = wsuch that (v,v,,; € EVi € {0,...n — 1}}

l



Dijkstra's Algorithm

e \Want to determine the distance between a vertex s and all
other vertices in an undirected graph

* Dynamic programming algorithm
* Add intermediate vertices one by one
e Start: Every vertex not s gets distance infinity
e 5 gets distance O

* Put all vertices into a priority heap ordered by distance

* We can quickly extract a vertex with minimum
distance



Dijkstra's Algorithm

e Example:




Dijkstra's Algorithm

e Update s:

e Qive all neighbors of s distance 1




Dijkstra's Algorithm

e The heap gives us one of {a, b} as a minimum distance
node.

e Pick a.

 Update all its neighbors by giving them an updated
distance

 Minimum of current value
e Value of a plus 1

e aisconnectedtob, c,ands



Dijkstra's Algorithm

e b gets min(1, 1+1)

e s gets min(0, 1+1)

e d gets min(inf, 1+1)




Dijkstra's Algorithm

b gets min(1, 1+1)

s gets min(0, 1+1)

d gets min(inf, 1+1)

After update, mark a as
used by removing it from
the priority queue




Dijkstra's Algorithm

e Pick the node with minimum distance that is not marked

e Which would be b

 Update its neighbors




e dgets min(2,1+1)

e e gets min(inf, 1+1)

e s gets min(0, 1+1)

Dijkstra's Algorithm

0 1

(
e c gets min(inf, 1+1)
(




Dijkstra's Algorithm

e Select one of the vertices with minimum distance:
e Fitherc, d, ore

e Pickc

e b gets min(1,2+1)

e dgets min(2, 2+1)

e e gets min(2, 2+1)

e fgets min(inf, 2+1)

e Remove c from the priority heap



Dijkstra's Algorithm

e Selecte 0 1

e Update b with min(1,2+1)

e Update ¢ with min(2,2+1)
e Update d with min(2, 2+1)
e Update f with min(3,2+1

* Remove e from priority heap



Dijkstra's Algorithm

e Selectd

e Updates have no effect

e Remove d from heap




Dijkstra's Algorithm

e Select g

* Only change is h gets 4

e Remove g from priority heap




e Need to select f

Dijkstra's Algorithm

 Update only changes h




Dijkstra's Algorithm

0 1

* Need to select h . €
e Does not change any value O\[ R 2
b d




Dijkstra's Algorithm

* Need to select | as the only
node left

e But that does not change
any values




Dijkstra's Algorithm

e Dijkstra's algorithm can be generalized to weighted

graphs



Dijkstra's algorithm

e Your turn

e Rule:

 Of course you
choose smallest
distance first, but
you break ties in
order of the
alphabet, e.g. select
a over f




Dijkstra's algorithm

e Selects




e Update aand f

Dijkstra's algorithm




Dijkstra's algorithm

e Select a

e Update band d

e s stays the same




Dijkstra's algorithm

e Select f (no choice
here)




Dijkstra's algorithm

e Selectb




Dijkstra's algorithm

e Selectd




Dijkstra's algorithm



Dijkstra's algorithm

e Select g




Dijkstra's algorithm

e Select h




Dijkstra's algorithm

e Selectc @0

),
%)
@)

e We might as well
stop here

e All updated values
will be 4 or more,
and every node has (
already a 3

®3



Graph Representations

* For computational purposes, we can
use:

o List of vertices and list of edges as
pairs
()
V=1{a,b,c,de,f g hi,j} )‘
= {(a,b), (@, e), (@, ), (@, ), (b, ) /

(b,1), (b, )),(c,d),(c, 8),(c,)), (d,e),
(d, h),(d, g), (e, f), (e, h),(f,h), (D),

(g ), (g )), (L, ))}




Dijkstra's Algorithm

* Need to maintain a priority heap
e Otherwise
ook at every node

* And every edge twice



Graph Representations

* An adjacency list

 For every vertex the list of
vertices to which there is an
edge

. =59 Hh O QO Q O W
H--Q W e DD e e e

O OO0 v Y QO v O
Q O DO O O DO Q O
Q Hh Hh oS 5 QWY Q - Hh



Graph Representations

* An adjacency matrix

abcdef ah.
° Squarematrix a010011001
conceptually labeled 28?8?88?88
with vertices 400104101410
.. e1 00101010
* coefficient f10001001 1
. ={1 edge between v; and v; 9001100010
/ 0 otherwise h?g)géglggg

I
i 01100010 1

O 021000220 —



Number of Vertices and
Edges

e Graph G = (V, E) with vertices V and edges E

* Whether directed or undirected, graph can have as
many edges as there are pairs of vertices

|V|>_ |[VI(|V]-1)
2 ) )

, Ihelatteris (

e Number of edges is at most O( | V|2)



Number of Vertices and
Edges

e Graph G = (V, E) with vertices V and edges E

 Graph algorithms usually need to look at each edge at
least once

* there are some idiosyncratic exceptions

e They usually run in time at least ©(| V|*)

* However, many important graphs are sparse.

* No edge between most pairs of vertices



Topological Sort

* We can use a directed graph in order to represent a
precedence relation

e Jopological sort:
* Given a directed graph:

 QOrder all vertices in an order such that an edge
always goes from a preceding to a succeeding
vertex

e Or show that this is impossible because there is a
cycle



Topological Sort

e Example 1: (2)
 Can arrange all vertices such (0
that arrows only go down (o)
e Sortis a,b,c,d,e,f,g,h,i,] (d)
il Y @\
CL o K 0 (9

s be



Topological Sort

e Example:

* There is a cycle, a topological sort is not possible




Topological Sort

* A simple algorithm:

* (Go to the adjacency list
: b,c,h
. d, J

: C
: £

(D

-5 WQ DO QO W

* Find a vertex with empty list, add it to a list, and remove it
from the graph



Topological Sort

A simple algorithm

: b, h
: d, ]

- -5 Q Hh D Q O o

- 9
7

e List contains {c}



Topological Sort

* A simple algorithm
: b,  h e
40 O

O W

Q.
(o)

: L
f: @ P
h: e 0

» Remove g and add it to the list {c, g}

0)

O



Topological Sort

A simple algorithm

n (a)

a: b,
b: d,J 0
d:
e: £ e
f: a P
h: e 0
0,

7

e Remove i and add it to the list {c, g, i}



Topological Sort

A simple algorithm

a: b, h 9
b: j 0
e: £
f:
O,

}@

0,

h: e
7

e« Remove d and add it to the list {c, g, 1, d}



Topological Sort

A simple algorithm

a: b, h 9
b: J 0

. 7@ .
h: e @

e Remove f and add it to the list {c, g, i, d, f}



Topological Sort

A simple algorithm

a: b ,h ()
° ()
e ()

(0)
h: e

e Remove j and add it to the list {c, g,i,d, f, j}



Topological Sort

A simple algorithm

a: h e
()
e:

O,

e Remove b and add it to the list {c, g,1,d, f, j, b}



Topological Sort

A simple algorithm

a: h

e Remove e and add it to the list {c, g,1,d, f, ], D, e}



Topological Sort

A simple algorithm

e Remove a and add it to the list {c, g,1,d, 1, j,b, e, h,a}



Topological Sort

* The reverse list is the topological sort:

e {a,h,e,b,],f,d,i,g,c}



Topological Sort

e |n this version, we have
 Jo determine the length of the adjacency list

o After selecting a vertex, delete that vertex from all the
adjacency lists

* The latter means scanning all adjacency lists repeatedly

e This is inefficient



Topological Sort

e Question: How can we do this better?



Topological Sort

* |nstead of optimizing the search for vertices, we can
optimize the selection of the vertex for removal

e Better algorithm:
 Find the in-degree for all vertices
 That is the number of edges going into a vertex
 While there are vertices with in-degree 0
* Remove the vertex

e Update the in-degrees



Topological Sort

e Example:
: b,c,h
d, ]

: C, 7
N

> e
- g

-5 Q H DO QO Q O W

* |nitialize in-degree O for all vertices



Topological Sort

e Example:

: b,c,h
: d, ]

: C, ]

. £

S
- g

- 5Q OO Q O W

* |nitialize in-degree O for all vertices



Topological Sort

e Example:

: b,c,h
: d, ]

: Cy
: T

-5 WQ DO QO W
0

e Go through the adjacency list.
 For each vertex in an adjacency list, add 1 to the in-degree

 For a, we change three in-degrees



Topological Sort

e Example:

: b,c,h
: d, ]

: C, ]
: T

-5 WQ DO QO W
0

* Go through the adjacency list.

* After processing all adjacency lists, we have the correct
in-degrees



Topological Sort

e Example:

: b,c,h
: d, ]

: C, ]
: T

-5 WQ DO QO W
0

e Now we start the removal phase
* We need to find a vertex with in-degree 0

e How can we make this more efficient?



Topological Sort

e Example:

: b,c,h
: d, ]

: C, ]
: T

-5 WQ DO QO W
0

e Now we start the removal phase
* We need to find a vertex with in-degree 0

e Could place the vertices in a heap



Topological Sort

e Example:

: b,c,h
: d, ]

: C, ]
: T

-5 WQ DO QO W
0

e We select a for the removal

* We go through its adjacency list and reset the in-degrees
of the nodes there



Topological Sort

e Example:

.- D0Q Hh OO Q O

e We select a for the removal: {a}

* We go through its adjacency list and reset the in-degrees
of the nodes there



Topological Sort

e Example:

H-DWQ H O Q Q

-

 We update our heap and select one of the 0-in-degree vertices:
e b: {a,b}

e and update the in-degrees of d and |



Topological Sort

e Example:

H-DWQ H O Q Q

-

 We update our heap and select one of the 0-in-degree vertices:
e b: {a,b}

e and update the in-degrees of d and |



Topological Sort

e Example:

209 O Q0

* We now randomly pick on of the vertices with degree 0, let's
pick |

* Deleting it means just decrementing the in-degree of g



Topological Sort

e Example:
0

° 1 G
- ()
d: ¢, 0
e: £
C ] O 1 @
g: 1
h: 0 2
7

e We add gtoourlist {a, b, i, g}



Topological Sort

e Example:

D Q H DO Q Q

* There are three nodes with in-degree 0, let's pick h



Topological Sort

e Example:

Q Hh O O O
Hh

7

* There are three nodes with in-degree 0, let's pick h



Topological Sort

e Example:
1
S ()
CrJ 0
£ 0
£ () PO ©)
1
g
(1 Ok

* Need to update in-degree of e

e {a,b,i1,g,h}



Topological Sort

e Example:

Q Hh O O O
Hh

7

 There are two nodes with in-degree 0O, let's pick d



Topological Sort

e Example:

e {a,b,i1,g,h,d}



Topological Sort

e Example:
©’ O
e: £
f: 0 @
. f
0, o)

7

e {a,b,i1,g,h,d}

e Can pick among four nodes: e



Topological Sort

e Example:

C.

f: @

g:
7

e {a,b,i,g,h,d,e}

 Can pick among four nodes in any order



Topological Sort

e Example:

: b,c,h
: d, ]

P Cy ]

. £

RS
- g

-5 WQ DO QO W

e {a,b,i,g,h,d, e h,j, [}

e Can pick among four nodes in any order



Topological Sort

e Analysis for topological sort on G = (V, E)
* Need to establish in-degrees:
* Process all elements in an adjacency list
e Correspond to edges
e work ~ | E|
* For each vertex:
e find the vertex as a vertex of minimum in-degree
e update in-degrees by going through the adjacency list

e Latter workis ~ | E| because we process each adjacency list entry once

* Delete the adjacency list

e Workis ~V



Topological Sort

e This algorithm is almost O( | E | ) but for finding the
minimum in-degree

 We will see a better algorithm shortly



Weighted Graphs

* Graphs with edge Source
weights

e Often, graphs in CS
have edge weights

* Example: edge

weight indicates the A

size of a pipeline Destination

* suchas .network How much can you pump from source to
connection, destination if the pipes have the indicated

capacity of capacities (Flow Problem)
roads, etc.



Weighted Graphs

 Graphs with edge weights
* Weights can indicate distance

e \What is the shortest distance from source to destination
Source

S N

NN
PN

Destination



