
Graphs
Thomas Schwarz, SJ

Graph Definition
• A graph has a set of vertices and a set of edges.

• Directed edges are pairs with

• Undirected edges are two-sets with

• A graph with directed edges is called a directed graph

• A graph with undirected edges is just called a graph

V

(u, v) u, v ∈ V

{u, v} u, v ∈ V

Graph Definition
• Graphs are represented

by:

• drawing the vertices
as small circles

• drawing the edges as
edges

• Directed edges are
drawn as arrows

An undirected graph with 7
vertices and 7 edges

A directed graph

Graph Definition
• Computer scientist sometimes differ from mathematicians

in what is called a graph

• In Mathematics, a(n undirected) graph can

• Have only one edge at most between two vertices

• Cannot have an edge to the same vertex

Graph Definition
• Computer scientist sometimes differ from mathematicians

in what is called a graph

• In Mathematics, a directed graph can

• Have only one edge at most between two vertices

• Cannot have an edge to the same vertex

Graph Definition
• Mathematicians call a graph that allows multiple edges

between the same pair of vertices

• a multigraph

Graph Representations
• To understand graphs, we can use:

• The visual representation

• E.g. The neighbor graph

• Take a political map

Graph Representations
• Examples:

• Place a vertex in
every entity
(state, not DDFF)

• Connect vertices
if the entities have
a common border

Graph Representations
• Vertices are stations

• Edges represent a
connection via
underground or light rail

• This is multi-graph
because several edges
can connect a station

Graph Definition
• Different visualizations can still give you the same graph,

as you can see from the examples below

a

b

c

d

f

e

ga

b

c

d f

e

g

ab, ac, bc, ce
cd, cf, de, df
ef, eg, fg

Graph Definition
• Two graphs are isomorphic, if there is a renaming of the

vertices that converts one into the other and vice versa

• Mathematically, a renaming is a bijection

• These two do not look the same, but they are
isomorphic: a → b, b → c, c → e, d → d, e → a

a

b c

d e

b e

c

d a

Graph Definition
• Two graphs are isomorphic, if there is a renaming of the

vertices that converts one into the other and vice versa

 is isomorphic to

G = (V, E) G′ = (V′ , E′)

⇔
∃f : V → V′ bijection : ∀v1, v2 ∈ V : (f(v1), f(v2)) ∈ E′ ⇔ (v1, v2) ∈ E

Graph Definition
• Determining whether two graphs are isomorphic is a

known, difficult question

• Some results are easy, e.g. vertices of the same rank
(the number of edges adjacent to a vertex) need to be
mapped to vertices of the same rank

• So, these two graphs cannot be isomorphic

Graph Definition
• These two graphs cannot be isomorphic

• The left graph has two vertices of degree 2

• The right graph has no vertices of degree 2

• But the number of vertices and edges is equal

Graph Definitions
• There are a number of important properties of graphs

• No need to learn them by heart, the ones used in CS
will get repeated over and over again

• A path between two vertices of a graph
 is a list of vertices

 such that there is an
edge between all and

• Furthermore, no vertices can be repeated

u, w ∈ V
G = (V, E)
u = v0, v1, …, vn−1, vn = w

vi vi+1

Graph Definitions
• Example for a path:

• Has length 5 (number of
edges)

• Example for a walk that is not
a path

• We visit the center vertex
twice

Graph Definitions
• For directed graphs, the paths need to follow the arrow

Graph Definitions
• A directed graph (digraph) is strongly connected if there is

a path from every vertex to every other vertex

Graph Definitions
• An undirected graph is connected if there is a path from

every vertex to every other vertex

• This is not a connected graph

• But it consists of two connected components

Graph Definitions
• Interesting question

• Is the friends graph on facebook connected

• The "friend" relation is mutual, so all users are vertices
and there is an edge if two users are in a friends-relation

• Probably not, because we signed up my mom on
facebook and she did not like it, so she is no longer
friends with anyone

• But how about "active users"

• Could there be a republican and a democratic facebook

• No, but maybe there are isolated groups

Euler Tours
• An Euler tour is a closed tour that traverses each edge of

the graph only once.

• Graphs with an Euler tour are called Eulerian

• Theorem: An undirected, connected graph is Eulerian if
each vertex has even degree.

• Recall: Degree is the number of edges of the vertex

Euler Tours
• Königsberg bridge problem

• Königsberg had seven bridges over the river Pregel

• Is it possible to have an afternoon walk crossing all bridges
exactly once

Euler Tours
• Solved by Euler

• Translate into a multi-graph (multiple edges allowed)

A

B

C

D

a b

c d

e

f

g

Euler Tours
• Actually, all edges have odd degree, so such a tour is not

possible

• To show that the theorem is correct:

• Euler tour exists implies all vertex degrees are even

• Because an Euler tour visits all edges and every time
it visits an edge, it needs to come and to go.

Vertex

First visit

Vertex

Second visit

etc.

Euler Tours
• Other direction can be shown using Fleury's algorithm

• Key observation:

• If we remove the edges from a closed tour

• (starts and ends at the same vertex)

• then in the remaining graph all vertices have still even
degree

Euler Tours
• Fleury's algorithm:

• Start at a node and walk anywhere, marking the edge

• Leave the node that you arrived at

• Continue until you can no longer find an unused edge

• At this point, you are back in the starting vertex

• If any of the vertices visited has a unused edges, start
with that edge until you are back at that edge.

• Splice the new circuit into the old one

Euler Tours
• Example

Euler Tours
• Start at a random vertex

Euler Tours
• Make a tour

1
2

3

4
5

6
78

Euler Tours
• Check for vertices with unused edges and pick a random

one

1
2

3

4
5

6
78

Euler Tours
• Start out creating a random circuit of unused edges

1
2

3

4
5

6
78

2.1
2.2

2.3

2.4

Euler Tours
• Pick another vertex with unused edges

1
2

3

4
5

6
78

2.1
2.2

2.3

2.4

Euler Tours
• Start a new part of the circuit

• Circuit so far: 1, 2, 2.1, 2.2, 2.3, 2.4, 3, 4, 5, 6, 7, 8, 8.1,
8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8

1
2

3

4
5

6
78

2.1
2.2

2.3

2.48.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Euler Tours
• In the new circuit, there are still vertices without all edges

used.

• Pick one

• Circuit so far: 1, 2, 2.1, 2.2, 2.3, 2.4, 3, 4, 5, 6, 7, 8, 8.1,
8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8

1
2

3

4
5

6
78

2.1
2.2

2.3

2.48.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Euler Tours
• And after this, we are done

• Circuit is: 1, 2, 2.1, 2.2, 2.3, 2.4, 3, 4, 5, 6, 7, 8, 8.1, 8.2, 8.3,
8.4, 8.5, 8.5.1, 8.5.2, 8.5.3, 8.5.4, 8.5.5, 8.5.6, 8.5.7, 8.5.8
8.6, 8.7, 8.8

1
2

3

4
5

6
78

2.1
2.2

2.3

2.48.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.5.1

8.5.2 8.5.3

8.5.4 8.5.5 8.5.6

8.5.78.5.8

Hamiltonian Circuit
• Similar question: Is there a circuit that goes through all

vertices

Hamiltonian Circuit
• Turns out to be very difficult

• Can be shown to not be decidable with a polynomial
time algorithm

Graph Definitions
• Distance in a graph:

• Length of the shortest path between two vertices

δ(u, w) = min{n |∃v0 = u, v1, …vn = w such that (vi, vi+1 ∈ E ∀i ∈ {0,...,n − 1}}

Dĳkstra's Algorithm
• Want to determine the distance between a vertex and all

other vertices in an undirected graph

• Dynamic programming algorithm

• Add intermediate vertices one by one

• Start: Every vertex not gets distance infinity

• gets distance 0

• Put all vertices into a priority heap ordered by distance

• We can quickly extract a vertex with minimum
distance

s

s

s

Dĳkstra's Algorithm
• Example:

s a

b

c

f

d

e

i

g

h

inf

inf inf

inf inf inf

inf inf

inf

0

Dĳkstra's Algorithm
• Update :

• Give all neighbors of distance 1

•

s

s

s a

b

c

f

d

e

i

g

h

1

1 inf

inf inf inf

inf inf

inf

0

Dĳkstra's Algorithm
• The heap gives us one of as a minimum distance

node.

• Pick .

• Update all its neighbors by giving them an updated
distance

• Minimum of current value

• Value of a plus 1

• a is connected to b, c, and s

{a, b}

a

Dĳkstra's Algorithm
• b gets min(1, 1+1)

• s gets min(0, 1+1)

• d gets min(inf, 1+1)

s a

b

c

f

d

e

i

g

h

1

1 inf

inf inf inf

inf inf

inf

0

Dĳkstra's Algorithm
• b gets min(1, 1+1)

• s gets min(0, 1+1)

• d gets min(inf, 1+1)

• After update, mark a as
used by removing it from
the priority queue

s a

b

c

f

d

e

i

g

h

1

1 2

inf inf inf

inf inf

inf

0

Dĳkstra's Algorithm
• Pick the node with minimum distance that is not marked

• Which would be b

• Update its neighbors
s a

b

c

f

d

e

i

g

h

1

1 2

inf inf inf

inf inf

inf

0

Dĳkstra's Algorithm
• d gets min(2,1+1)

• c gets min(inf, 1+1)

• e gets min(inf, 1+1)

• s gets min(0, 1+1)

s a

b

c

f

d

e

i

g

h

1

1 2

2 inf

inf inf

inf

0

2

Dĳkstra's Algorithm
• Select one of the vertices with minimum distance:

• Either c, d, or e

• Pick c

• b gets min(1,2+1)

• d gets min(2, 2+1)

• e gets min(2, 2+1)

• f gets min(inf, 2+1)

• Remove c from the priority heap

s a

b

c

f

d

e

i

g

h

1

1 2

2 inf

3 inf

inf

0

2

Dĳkstra's Algorithm
• Select e

• Update b with min(1,2+1)

• Update c with min(2,2+1)

• Update d with min(2, 2+1)

• Update f with min(3,2+1

• Remove e from priority heap

s a

b

c

f

d

e

i

g

h

1

1 2

2 3

3 inf

inf

0

2

Dĳkstra's Algorithm
• Select d

• Updates have no effect

• Remove d from heap

s a

b

c

f

d

e

i

g

h

1

1 2

2 3

3 inf

inf

0

2

Dĳkstra's Algorithm
• Select g

• Only change is h gets 4

• Remove g from priority heap

s a

b

c

f

d

e

i

g

h

1

1 2

2 3

3 4

inf

0

2

Dĳkstra's Algorithm
• Need to select f

• Update only changes h
s a

b

c

f

d

e

i

g

h

1

1 2

2 3

3 4

4

0

2

Dĳkstra's Algorithm
• Need to select h

• Does not change any value
s a

b

c

f

d

e

i

g

h

1

1 2

2 3

3 4

4

0

2

Dĳkstra's Algorithm
• Need to select i as the only

node left

• But that does not change
any values

s a

b

c

f

d

e

i

g

h

1

1 2

2 3

3 4

4

0

2

Dĳkstra's Algorithm
• Dijkstra's algorithm can be generalized to weighted

graphs

Dĳkstra's algorithm
• Your turn

• Rule:

• Of course you
choose smallest
distance first, but
you break ties in
order of the
alphabet, e.g. select
a over f

s a b c

d ef

g h

i j

Dĳkstra's algorithm
• Select s

s a b c

d ef

g h

i j

0 inf inf inf

inf infinf

inf inf

inf inf

Dĳkstra's algorithm
• Update a and f s a b c

d ef

g h

i j

0 1 inf inf

inf inf1

inf inf

inf inf

Dĳkstra's algorithm
• Select a

• Update b and d

• s stays the same

s a b c

d ef

g h

i j

0 1 2 inf

2 inf1

inf inf

inf inf

Dĳkstra's algorithm
• Select f (no choice

here)
s a b c

d ef

g h

i j

0 1 2 inf

2 inf1

2 2

inf inf

Dĳkstra's algorithm
• Select b s a b c

d ef

g h

i j

0 1 2 3

2 31

2 2

inf inf

Dĳkstra's algorithm
• Select d s a b c

d ef

g h

i j

0 1 2 3

2 31

2 2

inf 3

Dĳkstra's algorithm

Dĳkstra's algorithm
• Select g s a b c

d ef

g h

i j

0 1 2 3

2 31

2 2

3 3

Dĳkstra's algorithm
• Select h s a b c

d ef

g h

i j

0 1 2 3

2 31

2 2

3 3

Dĳkstra's algorithm
• Select c

• We might as well
stop here

• All updated values
will be 4 or more,
and every node has
already a 3

s a b c

d ef

g h

i j

0 1 2 3

2 31

2 2

3 3

Graph Representations
• For computational purposes, we can

use:

• List of vertices and list of edges as
pairs

V = {a, b, c, d, e, f, g, h, i, j}

E = {(a, b), (a, e), (a, f), (a, i), (b, c),

(b, i), (b, j), (c, d), (c, g), (c, j), (d, e),
(d, h), (d, g), (e, f), (e, h), (f, h), (f, i),

(g, h), (g, j), (i, j)}

a

b

c

def
g

h

i j

Dĳkstra's Algorithm
• Need to maintain a priority heap

• Otherwise

• Look at every node

• And every edge twice

Graph Representations
• An adjacency list

• For every vertex the list of
vertices to which there is an
edge

•

a

b

c

def
g

h

i j

a: b,e,f,i
b: a,c,i,j
c: b,d,g,j
d: c,e,g,h
e: a,f,d,h
f: a,e,h,i
g: c,d,h,j
h: d,e,f,g
i: a,b,f,j
j: b,c,g,i

Graph Representations
• An adjacency matrix

• square matrix
conceptually labeled
with vertices

• coefficient

ai,j = {1 edge between vi and vj

0 otherwise

a

b

c

def
g

h

i j

a b c d e f g h i j
a 0 1 0 0 1 1 0 0 1 0
b 1 0 1 0 0 0 0 0 1 1
c 0 1 0 1 0 0 1 0 0 1
d 0 0 1 0 1 0 1 1 0 0
e 1 0 0 1 0 1 0 1 0 0
f 1 0 0 0 1 0 0 1 1 0
g 0 0 1 1 0 0 0 1 0 1
h 0 0 0 1 1 1 1 0 0 0
i 1 1 0 0 0 1 0 0 0 1
j 0 1 1 0 0 0 1 0 1 0

Number of Vertices and
Edges

• Graph with vertices and edges

• Whether directed or undirected, graph can have as
many edges as there are pairs of vertices

• The latter is

• Number of edges is at most

G = (V, E) V E

(|V |
2) =

|V | (|V | − 1)
2

O(|V |2)

Number of Vertices and
Edges

• Graph with vertices and edges

• Graph algorithms usually need to look at each edge at
least once

• there are some idiosyncratic exceptions

• They usually run in time at least

• However, many important graphs are sparse:

• No edge between most pairs of vertices

G = (V, E) V E

Θ(|V |2)

Topological Sort
• We can use a directed graph in order to represent a

precedence relation

• Topological sort:

• Given a directed graph:

• Order all vertices in an order such that an edge
always goes from a preceding to a succeeding
vertex

• Or show that this is impossible because there is a
cycle

Topological Sort
• Example 1:

• Can arrange all vertices such
that arrows only go down

• Sort is a,b,c,d,e,f,g,h,i,j

i

a

b

c

d

e
f

g

h

j

i
a

b
c

d

e
f

g

h

j

Topological Sort
• Example:

• There is a cycle, a topological sort is not possible

i

a

b
c

d e

f

g

h

j

i

a

b
c

d e

f

g

h

j

Topological Sort
• A simple algorithm:

• Go to the adjacency list

• Find a vertex with empty list, add it to a list, and remove it
from the graph

i

a

b
c

d e

f

g

h

j

a: b,c,h
b: d,j
c:
d: c
e: f
f:
g:
h: e
i: g
j:

Topological Sort
• A simple algorithm

• List contains {c}

a: b,c,h
b: d,j
c:
d: c
e: f
f:
g:
h: e
i: g
j:

i

a

b

d e

f

g

h

j

Topological Sort
• A simple algorithm

• Remove g and add it to the list {c, g}

a: b,c,h
b: d,j
c:
d: c
e: f
f:
g:
h: e
i: g
j:

i

a

b

d e

f

h

j

Topological Sort
• A simple algorithm

• Remove i and add it to the list {c, g, i}

a: b,c,h
b: d,j
c:
d: c
e: f
f:
g:
h: e
i: g
j:

a

b

d e

f

h

j

Topological Sort
• A simple algorithm

• Remove d and add it to the list {c, g, i, d}

a: b,c,h
b: d,j
c:
d: c
e: f
f:
g:
h: e
i: g
j:

a

b

e

f

h

j

Topological Sort
• A simple algorithm

• Remove f and add it to the list {c, g, i, d, f}

a: b,c,h
b: d,j
c:
d: c
e: f
f:
g:
h: e
i: g
j:

a

b

e

h

j

Topological Sort
• A simple algorithm

• Remove j and add it to the list {c, g, i, d, f, j}

a: b,c,h
b: d,j
c:
d: c
e: f
f:
g:
h: e
i: g
j:

a

b

e

h

Topological Sort
• A simple algorithm

• Remove b and add it to the list {c, g, i, d, f, j, b}

a: b,c,h
b: d,j
c:
d: c
e: f
f:
g:
h: e
i: g
j:

a

e

h

Topological Sort
• A simple algorithm

• Remove e and add it to the list {c, g, i, d, f, j, b, e}

a: b,c,h
b: d,j
c:
d: c
e: f
f:
g:
h: e
i: g
j:

a

h

Topological Sort
• A simple algorithm

• Remove a and add it to the list {c, g, i, d, f, j, b, e, h, a}

a: b,c,h
b: d,j
c:
d: c
e: f
f:
g:
h: e
i: g
j:

a

h

Topological Sort
• The reverse list is the topological sort:

• {a, h, e, b, j, f, d, i, g, c}

i

a

b

d e

f

g

h

j

Topological Sort
• In this version, we have

• To determine the length of the adjacency list

• After selecting a vertex, delete that vertex from all the
adjacency lists

• The latter means scanning all adjacency lists repeatedly

• This is inefficient

Topological Sort
• Question: How can we do this better?

Topological Sort
• Instead of optimizing the search for vertices, we can

optimize the selection of the vertex for removal

• Better algorithm:

• Find the in-degree for all vertices

• That is the number of edges going into a vertex

• While there are vertices with in-degree 0

• Remove the vertex

• Update the in-degrees

Topological Sort
• Example:

• Initialize in-degree 0 for all vertices

i

a

b
c

d e

f

g

h

j

a: b,c,h
b: d,j
c:
d: c, j
e: f
f:
g:
h: e
i: g
j:

Topological Sort
• Example:

• Initialize in-degree 0 for all vertices

a: b,c,h
b: d,j
c:
d: c,j
e: f
f:
g:
h: e
i: g
j:

i

a

b
c

d e

f

g

h

j

0
0 0

0
0

0

0

0

0

0

Topological Sort
• Example:

• Go through the adjacency list.

• For each vertex in an adjacency list, add 1 to the in-degree

• For a, we change three in-degrees

a: b,c,h
b: d,j
c:
d: c,j
e: f
f:
g:
h: e
i: g
j:

i

a

b
c

d e

f

g

h

j

0
0+1 0

0
0

0+1

0

0

0

0+1

Topological Sort
• Example:

• Go through the adjacency list.

• After processing all adjacency lists, we have the correct
in-degrees

a: b,c,h
b: d,j
c:
d: c,j
e: f
f:
g:
h: e
i: g
j:

i

a

b
c

d e

f

g

h

j

0
1 0

11

2

2

1

1

1

2

Topological Sort
• Example:

• Now we start the removal phase

• We need to find a vertex with in-degree 0

• How can we make this more efficient?

a: b,c,h
b: d,j
c:
d: c,j
e: f
f:
g:
h: e
i: g
j:

i

a

b
c

d e

f

g

h

j

0
1 0

11

2

2

1

1

1

2

Topological Sort
• Example:

• Now we start the removal phase

• We need to find a vertex with in-degree 0

• Could place the vertices in a heap

a: b,c,h
b: d,j
c:
d: c,j
e: f
f:
g:
h: e
i: g
j:

i

a

b
c

d e

f

g

h

j

0
1 0

11

2

2

1

1

1

2

Topological Sort
• Example:

• We select a for the removal

• We go through its adjacency list and reset the in-degrees
of the nodes there

a: b,c,h
b: d,j
c:
d: c,j
e: f
f:
g:
h: e
i: g
j:

i

a

b
c

d e

f

g

h

j

0
1 0

11

2

2

1

1

1

2

Topological Sort
• Example:

• We select a for the removal:

• We go through its adjacency list and reset the in-degrees
of the nodes there

{a}

a: b,c,h
b: d,j
c:
d: c,j
e: f
f:
g:
h: e
i: g
j:

i

a

b
c

d e

f

g

h

j

0 0

11

1

2

1

1

0

2

Topological Sort
• Example:

• We update our heap and select one of the 0-in-degree vertices:

• b:

• and update the in-degrees of d and j

{a, b}

a: b,c,h
b: d,j
c:
d: c,j
e: f
f:
g:
h: e
i: g
j:

i

b
c

d e

f

g

h

j

0 0

11

0

2

1-1

2-1

0 1

Topological Sort
• Example:

• We update our heap and select one of the 0-in-degree vertices:

• b:

• and update the in-degrees of d and j

{a, b}

a: b,c,h
b: d,j
c:
d: c,j
e: f
f:
g:
h: e
i: g
j:

i

c

d e

f

g

h

j

0 0

11

1

2

0

1

Topological Sort
• Example:

• We now randomly pick on of the vertices with degree 0, let's
pick i

• Deleting it means just decrementing the in-degree of g

a: b,c,h
b: d,j
c:
d: c,j
e: f
f:
g:
h: e
i: g
j:

i

c

d e

f

g

h

j

0 0

11

1

2

0

1

Topological Sort
• Example:

• We add g to our list {a, b, i, g}

a: b,c,h
b: d,j
c:
d: c,j
e: f
f:
g:
h: e
i: g
j:

c

d e

f

g

h

j

0

0

1

1

2

0

1

Topological Sort
• Example:

• There are three nodes with in-degree 0, let's pick h

a: b,c,h
b: d,j
c:
d: c,j
e: f
f:
g:
h: e
i: g
j:

c

d e

f

g

h

j

0

0

1

1

2

0

1

Topological Sort
• Example:

• There are three nodes with in-degree 0, let's pick h

a: b,c,h
b: d,j
c:
d: c,j
e: f
f:
g:
h: e
i: g
j:

c

d e

f

g

h

j

0

0

1

1

2

0

1

Topological Sort
• Example:

• Need to update in-degree of e

• {a, b, i, g, h}

a: b,c,h
b: d,j
c:
d: c,j
e: f
f:
g:
h: e
i: g
j:

c

d e

f

g

j

0

0

1

2

0

1

Topological Sort
• Example:

• There are two nodes with in-degree 0, let's pick d

a: b,c,h
b: d,j
c:
d: c,j
e: f
f:
g:
h: e
i: g
j:

c

d e

f

g

j

0

1

1

2

0

1

Topological Sort
• Example:

• {a, b, i, g, h, d}

a: b,c,h
b: d,j
c:
d: c,j
e: f
f:
g:
h: e
i: g
j:

c

d e

f

g

j

0

1

1

2

0

1
1

Topological Sort
• Example:

•

• Can pick among four nodes: e

{a, b, i, g, h, d}

a: b,c,h
b: d,j
c:
d: c,j
e: f
f:
g:
h: e
i: g
j:

c

e

f

g

j

0

0

0

1
0

Topological Sort
• Example:

•

• Can pick among four nodes in any order

{a, b, i, g, h, d, e}

a: b,c,h
b: d,j
c:
d: c,j
e: f
f:
g:
h: e
i: g
j:

c

f

g

j

0

0

0

0

Topological Sort
• Example:

•

• Can pick among four nodes in any order

{a, b, i, g, h, d, e, h, j, f}

a: b,c,h
b: d,j
c:
d: c,j
e: f
f:
g:
h: e
i: g
j:

i

a

b
c

d e

f

g

h

j

Topological Sort
• Analysis for topological sort on

• Need to establish in-degrees:

• Process all elements in an adjacency list

• Correspond to edges

• work

• For each vertex:

• find the vertex as a vertex of minimum in-degree

• update in-degrees by going through the adjacency list

• Latter work is because we process each adjacency list entry once

• Delete the adjacency list

• Work is

G = (V, E)

∼ |E |

∼ |E |

∼ V

Topological Sort
• This algorithm is almost but for finding the

minimum in-degree

• We will see a better algorithm shortly

O(|E |)

Weighted Graphs
• Graphs with edge

weights

• Often, graphs in CS
have edge weights

• Example: edge
weight indicates the
size of a pipeline

• such as network
connection,
capacity of
roads, etc.

7

1

3

Source

Destination

4 3

3

2

5 8

2 2

How much can you pump from source to

destination if the pipes have the indicated

capacities (Flow Problem)

Weighted Graphs
• Graphs with edge weights

• Weights can indicate distance

• What is the shortest distance from source to destination

Destination

Source
3

5 2 2

1

1

1 14

7

3

