
Multi-threaded
programming

Thomas Schwarz, SJ

Preliminaries
• There are many different types of parallel execution

• Very large instruction words etc.:

• Execute many instructions at once

• Pipelining / Arithmetic Sub-Units:

• Execute many instructions at once

• Single Instruction Multiple Data:

• e.g. GUI

• Multiple Instruction Multiple Data:

• Multiple cores

• Parallel / distributed programming using messages

Preliminaries
• Moore's Law

The Way it Used to Be

Herlihy, Shavit, Luchangco, Spear: The Art of Multiprocessor
Programming

Preliminaries

Preliminaries

Single Thread Programming

Multiple Thread
Programming

Th
re
ad
s

Asynchrony

Execution Model
• Multiple threads

• Sometimes called processes

• Single shared memory

• (This might change in the future)

• Objects live in memory

• Unpredictable asynchronous delays

Preliminaries
• Simple example:

• Print out all prime numbers between 10 000 000 000
and 10 100 000 000 on a 10-processor architecture

• Load Balancing:

• Assume a probabilistic primality test

• Assign number to processor n n (mod 10)

Preliminaries
• Problem:

• We can predict that even processors will not print out
anything!

Preliminaries
• Simple example:

• Print out all prime numbers between 10 000 000 000
and 10 100 000 000 on a 10-processor architecture

• Load Balancing:

• Assign each processor a range
void primePrint {

 int i = ThreadID.get(); // IDs in {0..9}

 for (j = base + i*spread/10; j<base +(i+1)*spread/10;j++) {

 if (isPrime(j))

 print(j);

 }

}

Preliminaries
• Problem:

• Ranges have different numbers of prime numbers

• Workload is not evenly spread

• Need dynamic load balancing

Preliminaries
• Shared Counter

• Each thread works on a number

• After finishing, gets a new number

Preliminaries

int counter = new Counter(1);

void primePrint {

 long j = 1000000000;

 while (j < 1001000000) {

 j = counter.getAndIncrement();

 if (isPrime(j))

 print(j);

 }

}

Preliminaries

int counter = new Counter(1);

void primePrint {

 long j = 1000000000;

 while (j < 1001000000) {

 j = counter.getAndIncrement();

 if (isPrime(j))

 print(j);

 }

}

Shared Counter Object

Where Things Reside

Implementing Counter
• What is wrong here?

public class Counter {

 private long value;

 public long getAndIncrement() {

 return value++;

 }

}

Implementing Counter
public class Counter {

 private long value;

 public long getAndIncrement() {

 return value++;

 }

}

 temp = value;

 value = value + 1;

 return temp;

Implementing Counter
• So this can happen

Implementing Counter

Implementing Counter
public class Counter {

 private long value;

 public long getAndIncrement() {

 temp = value;

 value = temp + 1;

 return temp;

 }

}

ReadModifyWrite

instruction

Implementing Counter
• C++

std::atomic<>::fetch_add()

std::atomic<>::fetch_sub()

std::atomic<>::fetch_and()

std::atomic<>::fetch_or()

std::atomic<>::fetch_xor()

std::atomic<>::exchange()

std::atomic<>::compare_exchange_strong()

std::atomic<>::compare_exchange_weak()

Implementing Counter
• In Java:

public class Counter {

 private long value;

 public long getAndIncrement() {

 synchronized {

 temp = value;

 value = temp + 1;

 }

 return temp;

 }

}

Implementing Counter
• Mutual Exclusion

• Only one thread can enter

temp = value;

value = temp + 1;

Formalizing the Problem
• Safety properties:

• Nothing bad ever happens

• Liveness properties:

• Something good eventually happens

Formalizing the Problem
• Mutual Exclusion:

• Now to threads are even in the critical region

• Safety Property

• No deadlock:

• If only one thread wants it, it gets in

• If more threads want it, one gets in

• Liveness Property

• No starvation:

• "Your turn"

Communication about
Shared Object

• Threads cannot see what other threads are doing

• Attempt 1: Receive permission from other threads before
entering critical space

• Threads might be non-responsive (e.g. blocked)

• Communication must be:

• persistent

• not transient

Communication about
Shared Object

• Threads cannot see what other threads are doing

• Can protocol:

• Interpretation

• Interrupts do not work

• Sender sets fixed bit in receiver’s space

• Receiver resets bit when ready

• Requires unbounded number of interrupt bits

–Cans on Alice’s windowsill

–Strings lead to Bob’s house

–Bob pulls strings, knocks over cans

•Gotchas

–Cans cannot be reused

–Bob runs out of cans

Communication about
Shared Object

• Flag protocol

•

•

Alice:

raises flag

waits for Bob's flag to be down

enters critical section

leaves critical section

lowers flag

Bob:

 raises flag

waits until Alice's flag is down

enters critical section

leaves critical section

lowers flag

DANGER!

Communication about
Shared Object

• Simple flag protocol:

• Causes starvation if both see the other's flag before
they enter the critical section

Communication about
Shared Object

• Improved Flag Protocol

•

•

Alice:

raises flag

waits for Bob's flag to be down

enters critical section

leaves critical section

lowers flag

Bob:

raises flag

if Alice's flag is up:

lowers flag

waits for Alice's flag to go down

raises flag

enters critical section

leaves critical section

lowers flag

Communication about
Shared Object

• Can you show that two threads never end up in the
critical section?

Communication about
Shared Object

• Can you show that two threads never end up in the
critical section?

• Flag principle:

• IF both raise their flag and then look at the other flag,
one of them will see a flag raised

Communication about
Shared Object

• Assume that both Alice and Bob are in the critical section

• When Alice looked last:

• Her flag was up

• She never lowers her flag unless she leaves the critical
section

• Bob's flag was down

• When Bob looked for the last time:

• Alice's flag is down, so this is after Alice looked last

• But then Alice's flag was raised. Contradiction!

Communication about
Shared Object

• This protocol can be implemented with two Booleans

• Does not assume that setting or unsetting a Boolean is
instantaneous

Communication about
Shared Object

• Deadlock free:

• One will eventually enter the critical section

• Proof:

• Assume both want to enter

• Both Alice and Bob raise their flags

• If Bob looks before Alice raises her flag

• He has raised his flag already, Alice sees the flag and waits,
whereas Bob enters

• If Bob looks after Alice raises her flag

• He lowers his flag and does not enter

Communication about
Shared Object

• Starvation free?

• No: If Alice is busy entering and leaving, Bob is shut
out

Communication about
Shared Object

• Waiting:

• If Alice is delayed after raising her flag, Bob cannot do
anything

Producer Consumer
Problems

• Bob produces items

• Alice processes (consumes) items

• Need to prevent Bob writing an item while Alice starts
processing it

Producer Consumer
Problems

• Can protocol

• Alice:

• Bob:

waits until can is down

accesses section

leaves section

puts can up

 waits until can is up

 accesses section

 leaves section

 pulls can down

Producer Consumer
Problems

• Mutual exclusion:

• By induction:

• At time 0: Nobody is in the critical section, can is up

• Time t to t+1:

• If can is up: Only Bob can enter, then leave, then
pull can down

• If can is down: Only Alice can enter, then leave,
then put can up.

• qed

Producer Consumer
Problems

• Prove starvation freedom

Readers - Writers Problem

We are writing to a large bill-board

Readers - Writers Problem

By necessity, we only write one letter at a time

Readers - Writers Problem

Readers - Writers Problem

Without coordination, bad things can happen

Readers - Writers Problem

Without coordination, bad things can happen

Readers - Writers Problem
• Simple solution:

• Can use the flag protocol:

• Only Alice or Bob can access the billboard

• Alice can only read complete sentences

• Can use the can protocol:

• Bob produces complete sentences

• Alice consumes complete sentences

Readers - Writers Problem
• But these protocols involve waiting

• We can find several protocols that are wait-free.

Amdahls Law

• Speedup:

• Assume n processors:

• Ideal speed-up: n times

• Assume portion of program is parallelizable

• Best speed-up possible is

•

Time before parallelization
Time after parallelization

ρ

1
ρ
n + (1 − ρ)

Amdahls Law

Amdahls Law

Amdahls Law

