Algorithms

Overview



Algorithms

* A generic recipe for computation
 Should work on broad category of computers

e E.g. Algorithms for guantum computers, biological
computers are / would be different



Standard Model of
Computing

e What is presented to the programmer:

 Computer reads instructions from memory

 Computer acts on instructions by changing memory
locations

e Example: addi x, 5

| oad x into accumulator, load 5 into a register, add
results, move accumulator results back into
memory where X is located



Standard Model of
Computing

* Modern systems pretend that instructions are executed
serially

Compilers move instructions around without telling
Compilers change instructions
Most instructions are not atomic

Caches allow two different threads to have different
views of the memory contents

Memory system prioritizes reads over writes



Standard Model of
Computing

 Contract between system and programmer:

e System does what programmer wants, but in a different
faster way

e With a few exceptions, which makes multi-threaded
computing so challenging



Standard Model of
Computing

e Turns out that the optimizations of modern computing
systems do not create genuine new capabillities

* We can emulate a modern system using an old one

* We can even emulate a modern system using a model of

computing used in the 30s and 40s to model what
Mathematics can compute:

* Turing machine



DNA Computing

e DNA can store vast amounts of information in a very small
space.

e Store data (key-value pair) by encoding in DNA sub-
sequences

 Jo look up by key:

* |Introduce the compliment of the key's substring affixed
to a magnetic bead

e Compliment bonds to DNA molecules with that key
e Extract these DNA molecules magnetically

e Seqguence them for the result



Quantum Computing

e Uses quantum phenomena for computing
e Especially super-position and entanglement
e Can be analog or digital
e Digital guantum computing uses quantum gates
e Difficulty now is getting up the number of g-bits in a system
e Could be faster than classical computers

e Example: Shor's algorithm for factoring integers, Boson
sampling

e Will almost certainly force current cryptography to use much
larger keys



Algorithms

e Algorithms # Implementation

* An algorithm can be implemented more or less
efficiently

* You can measure the speed of an implementation on a
given system fairly accurately

* You can derive the performance of an algorithm using a
computing model



Algorithms

e (Correctness

 Can we prove that the answer given by an algorithm is
correct?

e via Automated proof methods
* via human reasoning

e (Often involves pseudo-code



Algorithms

e Performance

* Needs to be measured independently of
implementation

* Depends on the "instance size"

e Many problems in CS become proportionally more
difficult as they grow

e Use an "asymptotic" notation to capture behavior as
we "scale up”



Performance

e Computing uses resources
e Space: How much storage is needed
* Time: How many instructions are needed
e But it becomes more interesting:
e Some problems need to use storage (flash / disks)
e Storage is much slower

 Performance measurement: How many times does
the algorithm need to access storage



Performance

e Parallel / Multi-threaded performance

 Almost all computers have limited capability to execute
instructions in parallel

e E.g.: Develop data structures that are
e thread-safe
* |ock-free (no locking of shared resources needed)

e wait-free (no waiting for a thread to access a data
structure)



Data Structures

 Way to organize data for algorithms
e Correctness:
* Provide a clearly defined interface
e Abstract Data Structure
* Provides capabillity to argue about programs
o Allows independent development

 Both are examples of the benefits of
modularization



Data Structures

* An ADS is defined by its interface

* Possible to mathematically prove certain properties from
the definition of the interface

* In reality, mathematical proofs are rare

 But they become more important when things become
more difficult:

* Arguing about thread safety



Data Structures

 Performance of ADT
* Measured usually in time and space
e Different implementations favor different operations
 E.g. Inserts / Deletes at tail
e |f they are important: cyclic double linked
e |f they are not: single linked list
* Inserts into a Python list
* Fast at the end, slow at the beginning
o Suffer if lists are large

* Eventually, linked lists are better



