
Abstract Data
Structures
Thomas Schwarz, SJ

Algorithms
• Recipe for a computation

• Can have a large effect on the resources a computation
takes

Algorithms
• Example:

• Finding a string of length 100 in a human genome

• Naive method: Compare string letter for letter
against all positions in about 3 billion letters

• 300,000,000,000 comparisons

position 5

position 6

Algorithms
• Example:

• Finding a string of length 100 in a human genome

• Slightly better by breaking off comparisons when
we know we cannot have a match

• On average

comparisons

• Can be done with less than 3000000000
comparisons!

(3/4 + 2/4 + 3/16 + 4/32 + …) × 3000000000

Algorithms
• Two criteria

• Correctness

• Formal methods, testing

• Resource consumption

• Speed, memory use

Example:
Collatz Conjecture

• Collatz sequence (a.k.a. hailstorm sequence)

• Take a number

• If the number is even, divide the number by 2

• If the number is odd, multiply by 3 and add 1

• Repeat to get the Collatz sequence

• Example:

• 9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5,
16, 8, 4, 2, 1

• Collatz Conjecture: All Collatz sequences terminate in 1

Example:
Collatz Conjecture

• Implementing the Collatz conjecture tester:

• First, implement the Collatz step

def collatz_step(n):
 if n%2:
 return 3*n+1
 else:
 return n//2

Example:
Collatz Conjecture

• We can calculate a Collatz sequence:

def collatz_sequence(n):
 sequence = [n]
 while True:
 n = collatz_step(n)
 sequence.append(n)
 if n == 1:
 return sequence

Example:
Collatz Conjecture

• Assume we want to test the Collatz conjecture for all
numbers smaller than 1,000,000

• Observation 1:

• If a Collatz sequence contains a number, it will contain
the sequence for that number

• Collatz sequence for 11:

• 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1

• Collatz sequence for 9:

• 9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10,
5, 16, 8, 4, 2, 1

Example:
Collatz Conjecture

• Consequence:

• If we see a number for which the Collatz conjecture
holds, we do not need to continue calculating the
sequence

Example:
Collatz Conjecture

• Smart algorithm:

• Remember whether a number has already appeared in
a Collatz sequence

• Whenever we encounter such a number, we can stop

• Therefore: keep a list of all Collatz numbers and update
it

Example:
Collatz Conjecture

• When could the Collatz conjecture go wrong:

• One possibility:

• Just go off and get larger and larger numbers

• Alternative:

• We repeat the same sequence over and over again

Example:
Collatz Conjecture

def is_collatz(i):
 sequence = set([i])
 while True:
 i = collatz_step(i)
 if i==1:
 return True
 if i in sequence:
 return False
 sequence.add(i)
 if i < NN and collatz[i]:
 for x in sequence:
 if x < NN:
 collatz[x] = True

Example:
Collatz Conjecture

• Then check for all numbers between 2 and 1,000,000

print('starting')
for i in range(2,NN):
 if collatz[i]:
 continue
 if not is_collatz(i):
 print(i)
print('finishing')

Data Structures
• Fundamental objects of computation

• Built from smaller objects such as integers, floating
point numbers, pixels, codes (utf-8, ASCII)

• Using basic aggregation such as arrays, unions, fields
provided by software

Abstract Data Structures
• ADT encapsulate the behavior of a data structure

• Using an interface for interaction

Abstract Data Structures
• Example:

• Counter

• Counters can be incremented and decremented

• They have an integer value that can be read

• They are initialized with a zero value

• Behavior is abstractly defined:

• Decrementing a counter with zero value creates an error or
has no effect

• This is a design decision

• Incrementing a counter always increases the value by one

Abstract Data Structures
• Standard Implementation of an ADT uses a Python class

• But not necessarily

Abstract Data Structures
• Silly Example:

• The Counter ADT in Python

• Silly because we could just use an int with a couple
of functions

• Counters can be incremented and decremented

• They have a value that can be returned

• Null 0 is an absolute minimum

Abstract Data Structures
class Counter():
 def __init__(self):
 self.count = 0
 def add(self):
 self.count += 1
 def dec(self):
 if self.count >=1:
 self.count -= 1
 def get_count(self):
 return self.count
 def is_null(self):
 return self.count==0

Abstract Data Structures
• ADT provides an interface to

the world

• Creator: Create an instance

• Observer: Get something
from the ADT

• Producer: Create new
instances from old
instances

• Mutators: Change an
instance of the ADT

Public

Private

creators observers producers mutator

Abstract Data Structures
• Example:

• Strings:

• Different implementations:

• Pascal strings: an array of characters plus a length

• Unix strings: an array of characters with a null
symbol at the end

Abstract Data Structures
• Example:

• Strings:

• ADT String provides an interface that is:

• Formal enough to reason about strings

• Allows to re-implement the data structure

Abstract Data Structures
• Example:

• Strings:

• Creator: a constructor that creates a string

• Observer: get character at second last position

• Mutator: replace all substrings of a certain form with
a different form

• Producer: concatenate two strings

