
Back-Tracking
Thomas Schwarz, SJ

Complete Enumeration
• You are given:

• A set of numbers, e.g.

• A target number

• Your task is to find a subset of such that the sum of the
letters in the subset is as close to as possible.

𝕊 = {1,5,12,14,19,20,21}

t

𝕊
t

Complete Enumeration
• Complete enumeration solves this by

• creating all subsets

• selecting the one that works best

• One possibility is to use recursion for complete
enumeration

Complete Enumeration
• Base case:

• Subsets of the empty set are just the empty set

• Subsets of a set with one element are just x ∅, x

subsets(a0,a1,a2,a3,… an)

subsets(a0,a1,a2,a3,… an-1) subsets(a0,a1,a2,a3,… an-1)+{an}

subsets(a0,a1,a2,a3,… an-2) subsets(a0,a1,a2,a3,… an-1)+{an-1}

… … … …

subsets(a0,a1,a2,a3,… an-1)+{an-1, an}subsets(a0,a1,a2,a3,… an-1)+{an}

… … … …

Complete Enumeration
• Recursive Case:

• Subsets of the set are:

• Subsets of

• Subsets consisting of a subset of and

{a1, …, an}

{a1, …, an−1}

{a1, …, an−1} an
subsets(a0,a1,a2,a3,… an)

subsets(a0,a1,a2,a3,… an-1) subsets(a0,a1,a2,a3,… an-1)+{an}

subsets(a0,a1,a2,a3,… an-2) subsets(a0,a1,a2,a3,… an-1)+{an-1}

… … … …

subsets(a0,a1,a2,a3,… an-1)+{an-1, an}subsets(a0,a1,a2,a3,… an-1)+{an}

… … … …

Complete Enumeration
• How to represent sets?

• Python has a type sets, but the elements need to be
hashable

• And sets are not hashable

• Could use frozen_sets, but these are ugly

• So, create the set of subsets as a list

Complete Enumeration
• Implementation:

def subsets(a_list):
 if len(a_list) == 0:
 return []
 if len(a_list) == 1:
 return [[], [a_list[-1]]]
 lst = a_list[-1]
 menge = subsets(a_list[:-1])
 return menge + [x+[lst] for x in menge]

Complete Enumeration
• Example: target 37:

•

𝕊 = {1,5,12,14,19,20,21}

lista = [1, 5, 12, 14, 19, 20, 21]

for subset in subsets(lista):
 if sum(subset) == 37:
 print(subset)

[1, 5, 12, 19]
[5, 12, 20]

Complete Enumeration
• If you want to find the best approximation, you need to

remember the best value so far

def find(lista, target):
 best = sum(lista)+1
 best_seen = []
 for subset in subsets(lista):
 if abs(sum(subset) - target) < best:
 best = abs(sum(subset) - target)
 best_seen = subset
 return best, best_seen

Complete Enumeration
• Example: Target is 43

• Best: 1, [5, 19, 20]

Complete Enumeration
• Complete enumeration of subsets generates subsets

• Therefore, is exponential

• In general: complete enumeration with recursion creates a
call tree with or leaves

2n

bn bn+1

Back Tracking
• Idea:

• We do not always need to go down to the leaves of the
tree, but can stop earlier

Back Tracking
• Example:

• The n-queens problem

• Place n-queens on a
chessboard so that no queen
threatens any other

• Queens can move vertically,
horizontally, and diagonally

n × n

Back Tracking
• Strategy:

• We notice that there can be only one queen per column

• And that there has to be one in every column to get the
total number to n

Back Tracking
• Add queen to a partial solution

• Check whether queen placement is possible

• If not, stop this branch in the tree

• Trick is to use recursion so that we do not have to
administer walking up and down the tree

Back Tracking
• We encode the problem by having a list board

• queen is located in row and column board[i]

• E.g. board = [1,3,0,7,2]

i th i

row 3

col 7

Back Tracking
• E.g. board[1,3,0,7,2]

• We then assign the next queen in row 5

• We try out: 0, 1, 2, … , 7

• 0 does not work

Back Tracking
• E.g. board[1,3,0,7,2]

• We then assign the next queen in row 5

• We try out: 0, 1, 2, … , 7

• 1 does not work

• 2 does not work

• 3 does not work

Back Tracking
• E.g. board[1,3,0,7,2]

• 4 works

• And then we try further recursively

Back Tracking
• E.g. board[1,3,0,7,2]

• 4 works

• And then we try further recursively

Back Tracking
• E.g. board[1,3,0,7,2]

• 4 works

• And try more, but now we are stuck

Back Tracking
• E.g. board[1,3,0,7,2]

• Need to undo, but the OS-stack takes care of that

• Our recursive calls just return

Back Tracking
• E.g. board[1,3,0,7,2]

• Back in this situation and now 5 works

• But you can already see that the next step does not

Back Tracking
• E.g. board[1,3,0,7,2]

• Back in this situation and now 6 works

Back Tracking
• E.g. board[1,3,0,7,2]

• Recursion tries to place something in row 6

• Nothing works, so this was a dead-end

Back Tracking
• We implement this as a double loop

• Inner loop tries placement

• Outer loop is implemented via recursion

Back Tracking
• Need to check validity:

• Set-up guarantees that queens are in different columns

• Need to check that a new queen is not in the same row
or in one of the two diagonals with any already placed
queen

def is_valid(board):
 current_queen_row, current_queen_col = len(board)-1, board[-1]
 for row, col in enumerate(board[:-1]):
 diff = abs(current_queen_col - col)
 if diff == 0 or diff == current_queen_row - row:
 return False
 return True

Back Tracking
• We now count how many solutions there are

def n_queens(n, board = []):
 if n == len(board):
 return 1

 count = 0
 for col in range(n):
 board.append(col)
 if is_valid(board):
 count += n_queens(n, board)
 board.pop()
 return count

Back Tracking
• Notice how we add and a remove a value from the board

def n_queens(n, board = []):
 if n == len(board):
 return 1

 count = 0
 for col in range(n):
 board.append(col)
 if is_valid(board):
 count += n_queens(n, board)
 board.pop()
 return count

Back Tracking
• Back-tracking can be used if

• We can construct partial solutions

• We can verify that a partial solution is invalid

• Can we verify if the solution is complete

Back Tracking
• Back-tracking can be used if

• We can construct partial solutions

• We can verify that a partial solution is invalid

• Can we verify if the solution is complete

Back Tracking
• queens problem:

• Can we construct partial solutions?

• Yes, just use partial boards

• Can we verify that a partial solution is invalid

• Yes, if a queen is in the same row or in the same
diagonal with one placed before

• Can we verify if the solution is complete

• Yes, when we have reached a board of length n.

n

Back Tracking
• Example: Sudoku Solver

• Given an initial sudoku position

• Add one new number at a time

• Check whether that number violates any of the rules

• Finish when all numbers have been placed

