Divide and Conquer

Algorithms



Divide and Conquer

* Generic recipe for many solutions:

e Divide the problem into two or more smaller instances
of the same problem

 Conqguer the smaller instances using recursion (or a
base case)

e Combine the answers to solve the original problem



Integer Multiplication

* Assume we want to multiply two n-bit integers with n a

power of two

 Divide: break the integers into two n/2-bit integers

n
X =22x; + xp

y =27y, + yg

XL

XR

YL

YR




Integer Multiplication

e Conquer: Solve the problem of multiplying of n/2 bit
integers by recursion or a base case for n=1, n=2, or
n=4

n
X = 22XL + .XR XL XR

y =22y, + yg 0 :

XY, XL YR AR YL AR JVR



Integer Multiplication

e Now combine:

* |n the naive way:

x'y:(XL°2%+XR)°(yL°2%+yR)

=XL°yL°2n+(xL°yR+XR°yL)°2%+XR°)/R



Integer Multiplication

Xy = (XLZ% + Xg) - (YLZ% + Yr)

= xp -y 2"+ (- Vg XR'YL)°2% AR * VR
* We count the number of multiplications

 Multiplying by powers of 2 is just shifting, so they do
not count

e T(n) number of bit multiplications for integers with 2"
bits:
T(0) = 1

e Recurrence: T(n + 1) — 4T(n)



Integer Multiplication

e Solving the recursion 70) =1
T(n+1)=4T(n)

e |ntuition:

T(n)=4T(n— 1) =4*T(n - 2) = 4°T(n - 3) = ... = 4"T(0) = 4"



Integer Multiplication

e Proposition: T(n) =4"
* Proof by induction:
* |nduction base:
T0)=1=4"

e Induction step: Assume T(n — 1) = 4"~! . Show
T(n) =4"

e Proof: T'(n)

4T (n — 1) Recursion Equation

= 4 x 4" ! Induction Assumption
_ oy



Integer Multiplication

e Since the number of bits is 73 = 2"

* Number of multiplications is
S(m) = T(n) = 4" = 2")" = m?

e This is not better than normal multiplication



Integer Multiplication

e Now combine:

e |[nstead: x- y = (.XLZ% + XR) . (yLz% + yR)
=XL’YL‘2n+(XL°YR+xR’)’L)'2%+XR'YR

e Use (- -yYp+xp-y) =0 +xp) - +Yp)— X Y. —Xp" Vg

* This reuses two multiplications that are already used



Integer Multiplication

* We need to deal with the potential overflow in calculating

(xp + xg) - (Y + V)



Integer Multiplication

* Now, we only do three multiplications of 2" bit numbers in
order to multiply two 2"*! bit numbers

e The recurrence becomes

T0O)=1 Tn+1)=3T(n)



Integer Multiplication

e Solvingtherecurrence 7T(0)=1 Tmn+1)=3T(n)

e Heuristics:

Tn) =3Tn—1)=3°Tn-2) = ... = 3"T(0) = 3"



Integer Multiplication

* As before prove exactly using induction



Integer Multiplication

e The multiplication of two m = 2" -bit numbers takes
S(m) = T(n)
— 3n
_ 310g2(m)
= exp(log(3'2(")))

= exp(log, mlog3)
1
log?2

)

= exp(logm]log 3

— e:sqp(log(mlog2 3)
_ m10g2 3



Integer Multiplication

* This way, multiplication of m-bit numbers takes m 128496

bit multiplications



Integer Multiplication

 Can be used for arbitrary length integer multiplication

e Base case Is 32 or 64 bits

e But can still do better using Fast Fourier Transformation



Binary Search

* Given an array of ordered integers, a pointer to the
beginning and to the end of a portion of the array, decide
whether an element is in the slice

® Search(array, beg, end, element)

array

beg
end




Binary Search

e Divide: Determine the middle element. This divides the
array into two subsets

e Conquer: Compare the element with the middle element.
If it is smaller, find out whether the element is in the left
half, otherwise, whether the element is in the right half

e Combine: Just return the answer to the one question



Binary Search

def binary search(array, beg, end, key):
1f beg >= end:
return False
mid = (beg+end)//2
1f array[mid]==key:
return True
elif array[mid] > key:
return binary search(array, beg, mid, key)
else:
return binary search(array, mid+l, end, key)

test = [2, 3, 5, o, 12, 15, 17, 19, 21, 23, 27, 29,
31, 33, 35, 39, 41]

print (binary search(test, 0, len(test), 21))

print (binary search(test, 0, len(test), 22))



Binary Search

e et T(n) be the runtime of binary_search on a subarray
with n elements

e Recursion: There is a constant ¢ such that

(1) <c
T(n) <Tn/l2)+c



Binary Search

* Solving the recurrence

Itn) < T(n//2)+c
< T(n//4)+ 2c
< T(n//Qm) + mc

e If m> logzn then T(I’l) < T(l) + mc = (m + l)C



Binary Search

* With other words, binary search on n elements takes time

x log,(n)



Strassen Multiplication

e Definition of Matrix Multiplication

n
L @iz Bz = (Qaibizen
J=1

) ;

i

i

V. T O e c__L i row

B : 7 column

|

v

column j



Strassen Multiplication

o Cost of definition:

e n? multiplications for all mk elements in the product

e Square n X n matrices: n* elements



Strassen Multiplication

e Divide and conquer: Assume n = 2" is a power of two.
* We can use the following theorem:

e Break each matrix into four submatrices of size
271 % 21 and calculate

<A11 A12> . (Bll BlZ) _ (AllBll LA AIZB21 A11B21 LA AlZB22>

A21 A22 B21 B22 A21B11 A22B21 A21B21 A22B22




Strassen Multiplication

* As s, a divide and conquer algorithm gives us 8
multiplication of matrices half the size.

e Let m(n) be the number of multiplications needed to
multiply two 2" X 2" matrices using divide and conquer

e Obviously: m(1l) =1

Recursion: m(n + 1) = 8m(n)



Strassen Multiplication

e Claim: m(n) = 2°"
e Proof: Induction base: m(0) =1 = 2°¢
* |Induction step:

e Hypothesis: m(n) = 2"

e To show: m(n+ 1) = 2°0+D

e Proof:

m(n+ 1) = 8m(n) = 8§ - 23" =23 .23 = 23n+3 = 3+



Strassen Multiplication



Strassen Multiplication

e Strassen: Can use 7 matrix multiplications to calculate all eight
products

o M, :=(A; +A)B; +B,))
« M, = (A, +A2,)B,
o M3 :=A(B;,—-B,))
o My :=Ay,By; =B )
« M5 :=(A;+A,)B,,
o Mg :=(Ay; — A )B;; +B))
o M; = (A1 —Ay)B,; +B,))



Strassen Multiplication

Then can get all the submatrices on the right:
C1,1 =M, +M, -M;+ M,

Ci,=M; + M;

C, i =M, +M,

C2,2=M1 - M, + M, + M,



Strassen Multiplication

e Now the recurrence becomes
e m(n+1)="Tmmn), m0O)=1
* which is obviously solved by

e m(n) ="17"



Strassen Multiplication

e Remember that the size of the matrix was 2" X 2.

e Thus, if M(n) is the number of multiplications for an n X n
matrix with power of 2 rows, then

e M(n) = m(log,(n)) = 798
e Since

10g2(7log2(n)) = log,(n)log,(7) = log,(7)log,(n) = lng(nlog2(7))
e M(n) = nlo2D » 5280735



Strassen Multiplication

 The algorithm can be extended for matrices that

* have number of rows = number of columns not a power
of 2

* are not square



Merge-Sort

e |dea:

* |t is easy to create a single sorted array out of two
sorted arrays

* Look at the first elements in each array

* Move the smaller one into the target array



Merge-Sort

def merge (arrl, arr?2):
target = [ |
ione, 1two = 0,0
while 1one<len(arrl) and itwo<len (arr?) :
1f arrl[ione]<arr?2[itwo]:
target.append(arrl[ione])
ione += 1
else:
target.append(arrZ2[itwo])
1two += 1

1f 1one == len(arrl):
target += arr2[i1two:]
else:

target += arrl[ione:]



Merge-Sort

e Example

e Merge

O|1]5 |8 BENREINE

e |2/3|4|6|7]9]10

e Initialize target list, set two indices equal to 0



Merge-Sort

e Compare elements at indices

[ J O(1]5 |8 HENREINE

° 2|13|4|6]|7]9]10

e 0<2: Select 0 and move first index to right

[ J I 11 12 13

o 21314679 (10




Merge-Sort

* Repeat
L )
o 213[(4(6[7]9]10

SEEcE 11 12 13

® 2|3|4|6|7]|9][10




Merge-Sort

5 | 8 BN EAEE

2134|679 ]10

Sl 11 12 13

3141679 |10




Merge-Sort

5 | 8 MANRPARE

3|46 7(9]10

S 11 12 13

416|719 (10




Merge-Sort

e 11 12 13

N
| o

N
(@)
~

9 (10

5 | 8 B EARE

6(7]9]10




Merge-Sort




Merge-Sort




Merge-Sort




Merge-Sort




Merge-Sort




Merge-Sort




Merge-Sort

[012345678910 J

[012345678910 J




Merge-Sort

* Divide and conquer:

e Divide array in two halves

o mid len (arr)//2
arrl, arrZ2 = arr[:mid], arr[mid:]

* Apply recursively merge-sort

° arrl = merge sort(arrl)

arrZ2 = merge sort(arrl)

* Merge both arrays



Merge-Sort

def merge sort (arr):
1f len(arr) < 2:
return arr

mid = len(arr)//2

arrl, arr?2 = arr[:mid], arr[mid:]
arrl = merge sort(arrl)

arrZ2 = merge sort(arr?)

return merge (arrl, arr?2)



Merge-Sort

* |n practice:
* Merge-sort is not so good on very small arrays

 Use something as bad as bubble-sort for arrays of
small size



Merge-Sort

* Performance:
 Merge of two arrays with n; + n, = n elements total?

e Upton — 1 comparisons

e Recurrence formula for the number of comparisons is
approximately

e C(n)=2-C(n/2)+n



Merge-Sort

e Ad hoc solution of the recurrence relation

e C(n)=2Cn/2)+n

. =2-QCMA) + ) +n=AC0IA) +n
. =8C(n/8)+n+n+n
. = 16C(n/16)+n+n+n+n

. =n+n+..n=log(n)(n+1)



Quick-Sort

* Merge Sort:
* Divide is simple
* Work is done in the merge step
* Quick Sort
* Work is done in the divide step
e Conquer part is simple
e Key ldea:

* Pick a pivot, form two arrays: those smaller than the
pivot and those larger than the pivot



Quick-Sort

e Partition Step

e Hoare (1959) superseded by simpler Lomuto's scheme

e |dea:

e Have two indices i and j

* Pick pivot to be the last element
e Loop invariant: Elements up to 1 are smaller than pivot
e Elements between 1 and j are larger than the pivot

e Loop on j, adjusting 1 if necessary



Quick-Sort

e Example:

e (98|34 (116 (13|17 |10(12] 0|2 |5

 Introduce pivot 5 (last element) and indices 7 and

pivot

:

834 |11|6 |13|1 |7 (10|12 0|2 |5




Quick-Sort

\Yel
not 9<5 P |

918 (3 |4(11|6 (13| 1|7 |10(12|0 |2 |5

oot

/ I

advance only 7

pivot




Quick-Sort

pivot

l

918 (3|4 (11|6 13| 1|7 |10{12| 0|2 |5

1s arr[j] < pivot?

not 8<5 pivot

l

9183|4116 13| 1|7 |10{12| 0| 2| 5

ot

/ J

only advance 7



Quick-Sort

pivot

l

918 (3 |4(11|6 13| 1|7 |10{12|0 |2 |5

3 < 5:
advance 1
exchange arr[i] and arr[7j]
pivot

:

318194 (116 (13|17 |10(12] 0|2 | 5

now advance 7]



Quick-Sort

pivot

l

31894 (11|6 13| 1|7 [10{12| 0|2 |5

4<5 so advance 1 and swap

pivot

l

4198|116 |13(1 |7 |(10]12( 0|2 | 5

advance 7



Quick-Sort

pivot

:

41918 (11|06 |13| 1|7 |10{12| 0| 2| 5

arr[]j]] > pivot:
Just advance 7



Quick-Sort

pivot

:

41918 (11|06 |13| 1|7 |10{12| 0| 2| 5

6 > 5: Just advance 7



Quick-Sort

pivot

:

41918 |11|6 131 |7 (10|12 0|2 | 5

Just advance 7



Quick-Sort

pivot

:

41918 (11|06 |13| 1|7 |10{12| 0| 2| 5

f f
/ J

arr[]j]] < pivot:
advance 1
swap

advance 7



Quick-Sort

pivot

:

41118 (116|139 |7 |10{12| 0| 2| 5

advance 7



Quick-Sort

pivot

:

41118 (116|139 |7 |10{12| 0| 2| 5

advance 7



Quick-Sort

pivot

:

41118 (116|139 |7 |10{12| 0| 2| 5

advance 7



Quick-Sort

pivot

:

3|4 |1(8([11]6 13| 9|7 (10(12| 0|2 | 5

arr[j] < pivot: advance 1, then swap

pivot

:

34|10 (f11]6 (13|97 |10(12] 8|2 |5

advance 7



Quick-Sort

pivot
3141|0116 (13|97 [10]112(8 |2 |5
/ J

2<5:

advance 1 and swap

pivot
314111026 |[13]|9 |7 |10]112| 8 (11 5
/ J

Reached end of array
advance 1 and swap with pivot



Quick-Sort

Recursively sort left part and right part

314 1]o0]2]5Halol7 00218 lit]6

0 1]2]a]afs|el7]elelioliili2li3



Quick-Sort

* Analysis of quick-sort
e Each partition of an array of length n
e has n — 1 comparisons

e and ®(n) work



Quick-Sort

* Worst case behavior:
* The pivot is always the maximum or minimum element
* E.g. the array is ordered or reversely ordered

* E.g. all elements are the same

e Number of comparisons 7(n)

* Recurrence then:
e TM)=Th-D+m-1D)=T-2)+(n—-2)+(n—-1)
e =..=14+24+4...+(n=-2)+(n-1)

. = %mz ~n) = ©(n?)



Quick-Sort

e Best case:

* We split the array in halves

e TM)=m—-1)4+2T(n/2)

— (=142 (== 1) +4T(>)

— (=1 +2- (== D) +4- (&= —1)+8T(=)
— 2 4 3

~n-1H)+@-DH+m-D+..(n—-1)
» with log,(n) addends

e« =~ nlog,(n)



Quick-Sort

* |f we can guarantee that the partitioning step always split
to a ratio better than 1 : a:

o O -log,(n))

e foranyratiol : a



Quick-Sort

e How to make Quick-Sort faster:
e Pivot selection Is crucial

 Bad selection happens for natural arrays (almost
ordered)

e Use a random pivot

e Use a small sample of array elements and select the
median

 For small arrays, use bubble sort



Quick-Sort

* Despite its quadratic worst case:

* Quicksort recognized as one of the fastest sorting
methods

e Quicksort is in place



