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Permutations
• A permutation of the set  is a reordering of the 

numbers where each number between 1 and n appears 
exactly once.

{1,2,…, n}



Permutations
• How many permutations are there?


• Use recurrence!


• In a permutation of , where is the  
located?


• There are  other numbers. 


• This gives us  gaps and spots before and after

{1,2,…, n} n

n − 1

n − 2

a1 a2 a3 a4 a5



Permutations
• Let  be the number of permutations of  elements


• This gives us the recurrence 


• 


• which can be unfolded very simply


•                          

n! n

n! = n ⋅ (n − 1)!

n! =
n

∏
i=1

i



Permutations
How do we determine its asymptotic growth?





Use Logarithms!

n! =
n

∏
i=1

i



Permutations
• Approximation of the factorial


     Use        


Use an integral!

log n! =
n

∑
i=1

log(i)



Permutations
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∑
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Permutations

    


                 


                 


                 

log(n!) =
n

∑
i=1

log(i)

≈ ∫
n

i=1
log(x)dx

= [x log x − x]n
1

= n log(n) − n + 1



Permutations
Therefore


       


            


            


            

n! ≈ exp(n log(n) − n − 1)

= exp(log(nn) − n + 1)

= nn ⋅ e−n ⋅ e

= e ⋅ ( n
e )

n



Permutations
An analysis of the error substituting the Riemann sum for an 
integral gives Stirling’s formula (invented by de Moivre)


                    2πnn+ 1
2 e−n ≤ n! ≤ enn+ 1

2 e−n



Simple Sorting 
Algorithms

Thomas Schwarz, SJ



Simple Sorting
• Sorting algorithms can be in-place:


• No additional memory is needed


• Sorting algorithms can be based on swaps



Simple Sorting
• Implementing in-place sorting with swaps


• Do not move large objects:


• 


• Instead move pointers to objects:  (also more natural in Python) 


•      

temp = blue.copy()

blue = orange.copy()

orange = temp.copy()

arr[3],arr[6] = arr[6],arr[3]



Bubble Sort
Thomas Schwarz, SJ



Bubble Sort
• Idea of bubble sort:


• Repeatedly swap adjacent elements in an array until 
they are in order


• Reminder: Swaps in Python are easy:


• arr[i],arr[i+1] = arr[i+1],arr[i]


• while not done:

for i in range(len(arr)-1):

    if arr[i] > arr[i+1]:

        arr[i],arr[i+1]=arr[i+1],arr[i]



Bubble Sort
• Example:  Sort 


• First pass: Check first pair


• Swap and move on


• No swap necessary, move on

6 35 1 024

6 35 1 024

6 35 1 02 4

6 35 1 02 4



Bubble Sort
• Example:


• Swap and move on


• 


• Swap and move on


• 


• Swap and move on


•

6 35 1 02 4

635 1 02 4

635 1 02 4



Bubble Sort
• Example:


• Swap and move on


• 


• Array is still not sorted, so we need to continue


• However: Notice that the maximum element has been 
picked up and is now at the correct position


• We only have to order the first  positions

635 1 02 4

n − 1



Bubble Sort
• Example


• Second pass:


• 


• 


•

635 1 02 4

635 1 02 4

63 5 1 02 4



Bubble Sort
• Example (Second Pass):


• 


• 


• The maximum in the remaining array has now reached its 
correct point


•

63 51 02 4

63 51 02 4

63 51 02 4



Bubble Sort
• Example: Third Pass


• 


• 


• 


•

63 51 02 4

63 51 02 4

63 51 02 4

63 51 02 4

• 


• Third largest element 
has bubbled up to the 
correct place


•

63 51 02 4

63 51 02 4



Bubble Sort
• Fourth pass


• 


• 


• 


•

63 51 02 4

63 51 02 4

63 51 02 4

63 51 02 4

• Now 3 has bubbled up


•
63 51 02 4



Bubble Sort
• Fifth Pass


• 


• 


• 


• 2 has bubbled up


•

63 51 02 4

63 51 02 4

63 51 0 2 4

63 51 0 2 4

• Final Pass


• 


• 


• 1 has bubbled up, and a 
singleton is always sorted:


•

63 51 0 2 4

63 510 2 4

63 510 2 4



Bubble Sort
• We need one less pass than there are array elements


• And we do not need to look at the last elements of the 
array

def bubblesort(arr):

   n = len(arr)

   for i in range(n-1):

      for j in range(n-i-1):

          if arr[j] > arr[j+1]:

              arr[j],arr[j+1]=arr[j+1],arr[j]



Bubble Sort
• Potential improvements:


• After each pass, the elements after the last swap are 
already in order


• We can skip the corresponding passes


• But need to keep track of the last swap



Bubble Sort
• Performance:


• At pass , we compare  
values


• This means, we make


•  

comparisons

i, i = 0,1,…, n − 2 n − i − 1

(n − 1) + (n − 2) + … + 2 + 1 =
n(n − 1)

2



Bubble Sort
• If we use the last swap trick:


• Best case behavior: The array is sorted, we did not do 
any swap, and we are done after a single pass with 

 comparisonsn − 1



Bubble Sort
• Bubble sort is known to be the least efficient sort for data 

that is not already sorted


• Among the sorting algorithms that do not try to be 
horrible



Cocktail Sort
• Bubble sort will move small elements only slowly to their 

correct position


• Cocktail sort makes one pass from the left to the right


• Moves maximum to its rightful spot


• Then the next pass from the right to the left


• Moves minimum to its rightful spot


• Then the next pass from left to the right starting with 
second element and ending before the last one



Cocktail Sort



Insertion Sort
Thomas Schwarz, SJ



Insertion Sort
• Idea:


• Break the array into a sorted and an unsorted part


• Move first element of the unsorted part into the 
correct position in the sorted array



Insertion Sort
• Example:


• Sort 


• Reddish part is unsorted: initially whole array


• Greenish part is sorted: initially empty

6 35 1 024



Insertion Sort
• Example:


• 


• First element in the red part is 4:


• Insert 4 into the green part


•

6 35 1 024

6 35 1 024



Insertion Sort
• Example


• 


• Next unsorted element is 2


• Compare with 4


• Insert in front of 4


•

6 35 1 024

6 35 1 02 4



Insertion Sort
• Example


• 


• Next unsorted element is 6


• Compare with 2, then 4


• Insert after 4


•

6 35 1 02 4

6 35 1 02 4



Insertion Sort
• Example


• 


• Next unsorted element is 5


• Compare with 2, 4, 6


• Insert before 6


•

6 35 1 02 4

6 35 1 02 4



Insertion Sort
• Example


• 


• Next unsorted element is 3


• Compare with 2, then 4


• Insert before 4


•

6 35 1 02 4

63 5 1 02 4



Insertion Sort
• Example


• 


• Next comes 1


• Compare with 2


• Insert before 2


•

63 5 1 02 4

63 51 02 4



Insertion Sort
• Example


• 


• Final unsorted element is 0


• Compare with 1


• Insert before 1


• 


• We are done

63 51 02 4

63 510 2 4



Insertion Sort
• Performance:


• Inserting at a specific index in an array means moving the 
elements after the insertion


• This is a big hidden cost


• Inserting at a specific index into a linked list only involves 
finding the insertion point and constant link resetting work


• However, we can now avoid comparisons


• To insert into a sorted array of length 


• only need on average  comparisons

i
i
2

+ 1



Insertion Sort
• Average case:


• Pass  has  comparisons


• Total of  comparisons

i 1 +
i
2

n−1

∑
i=0

(1 +
i
2

) = n +
1
2

n(n − 1)
2



Insertion Sort
• Best Case:


• Only one comparison per pass:


• New element inserted into the 
sorted part is smaller than the 
current minimum of the part


• Original array is ordered from 
maximum to minimum

6 35 1 024

6 35 1 024

6 35 1 024

6 35 1 024

63 5 1 024



Selection



Selection Problems
• Given an unordered array:


• Find the -largest (-smallest) element in an unordered 
array


• Naïve Solution:


• Sort (usually in time  )


• Pick element  or  of the sorted array

k

Θ(n log n)

n − k k



Selection Problem
• Finding the maximum


• Finding the maximum and minimum at the same time


• Finding the th largest element


• Finding the median

k



Maximum
• Obvious algorithm:


•  comparisonsn − 1

def max(array):

   result = array[0]

   for i in range(1, len(array)):

      if array[i]>result:

         result = array[i]

  return result


      

      



Maximum
• Toy algorithm:


• Partition array into  pairs.


• (There might be an additional element).


• Use one comparison in order to select the largest of 
each pair (plus the odd one out if exists)


• These form an array of length 


• Recursively call the toy algorithm

⌊n/2⌋

⌊n/2⌋ + 1



Maximum
• What is the recurrence relation?



Maximum
• 


• T(2) = 1


• Now use substitution to get an idea of solving the recurrence

T(n) = T(n − ⌊n/2⌋) + ⌊n/2⌋



Maximum
• Assume  is a power of 2n



Maximum
• Recurrence then becomes 


• 


•         


•         


•                 


•          


•          

T(n) = T(n/2) + n/2, T(2) = 1

= T(n/4) + n/4 + n/2

= T(n/8) + n/8 + n/4 + n/2

…

= T(2) + 2 + 4 + 8 + … + n/8 + n/4 + n/2

= n − 1



Maximum
• Now prove by induction for all 


• 


•

n ∈ ℕ

T(n) = T(n − ⌊n/2⌋) + ⌊n/2⌋

T(2) = 1



Maximum
• Induction Hypothesis:   if .


•  


• 


• 


•

T(m) = m − 1 m < n

T(n)

= T(n − ⌊n/2⌋) + ⌊n/2⌋

= n − ⌊n/2⌋ − 1 + ⌊n/2⌋

= n − 1



Maximum
• In fact:


•  Theorem:  Finding the maximum of an array of length  
costs at least  comparisons 

• Proof: Place all elements into three buckets:


• One for not-looked at


• One for won all comparisons


• One for lost at least one comparison

n
n − 1



Maximum

• A single comparison can involves 6 cases


• X-X:  move two elements from X, one into W, one into L


• X-W: move one element from X into W or move one element from X 
into W and one from W into L


• X-L: move one element from X into W or one into L


• W-W: move one element from W to L


• W-L: nothing or move one element from W to L


• L-L: nothing

W LX



Maximum
• To have finished the algorithm:


• No elements left in X


• Only one element left in W


• Otherwise, can construct counterexample

W LX



Maximum
• One left in X:  could be the maximum


• Two (or more) left in W:


• Which one is the maximum?

W LX

W LX



Maximum
• Each comparison sends at most one element to 


• At best,  comparisons

L

n − 1



Combined Maximum and 
Minimum

• Combined Maximum and Minimum


• Naïve algorithm:


• Calculate the max, then the min (can exclude the 
max)


•  comparisonsm − 1 + m − 2 = 2m − 3



Combined Maximum and 
Minimum

• A better algorithm


• Divide the array into pairs 


• Compare the values of each pair


• Place the winner of each pair in one array, the looser of 
each array in a second array


• (Or use swapping so that the winners are in even 
position and the losers are in odd positions)


• Now use maximum and minimum on the two sub-
arrays



Combined Maximum and 
Minimum

• Case 1:  is even


• There are  pairs or  comparisons


• Run maximum on even indexed array elements


• This gives us  comparisons


• Same for minimum


• Total is  comparisons

n

n/2 n/2

n/2 − 1

n/2 + n/2 − 1 + n/2 − 1 =
3n
2

− 2

compare 
and swap

compare 
and swap

compare 
and swap

compare 
and swap

compare 
and swap

compare 
and swap

compare 
and swap

compare 
and swap

compare 
and swap

compare 
and swap

compare 
and swap

compare 
and swap



Combined Maximum and 
Minimum

• Case:  is odd


• Run algorithm on the first  elements


•  comparisons


• Then add two comparisons to see whether the last 
element is either minimum or maximum


• Total of  comparisons

n

n − 1
3n − 3

2
− 2

3n − 3
2



Combined Maximum and 
Minimum

• Can we do better?


• Use a more sophisticated bin method


• X - not looked at, W - won every comparison, L - lost 
every comparison, Q - at least one win and at least one 
loss

W LX Q



Combined Maximum and 
Minimum

• To be successful, need to move everything out of X and 
have only one element in W and L


• Otherwise can have a counter-example

W LX Q



Combined Maximum and 
Minimum

• Just counting the moves is not sufficient


• Example: 


• We compare an element  with an element 


• Possibly:   


• And we move both elements to the  bucket


• So, possible to move all  elements out of  into  in 
 comparisons and  elements out of  into  

in  comparisons


• Only gives  moves!

w ∈ W l ∈ L

w < l

Q

n X W ∪ L
n/2 n − 2 W ∪ L Q

n/2 − 1

n − 1



Combined Maximum 
and Minimum

• Use an adversary argument


• Algorithm can only depend on the knowledge of the previous 
comparisons when making a decision


• An adversary is allowed to change all values as long as the results 
of the comparisons stay the same


• If  and , then the only thing the algorithm knows is 
that  has won all of its comparisons and  has lost all of its 
comparisons


• Adversary therefore is allowed to change the value of  
downward 


• Adversary guarantees that .

w ∈ W l ∈ L
w l

l

w > l



Combined Maximum 
and Minimum

• With the help of the adversary who substitutes values 
when needed


• Potential:  


• Calculate net changes for comparisons between 
buckets

3
2

|X | + |W | + |L |



Combined Maximum 
and Minimum

• Compare X with X


• Net change (-2, 1, 1, 0) 


• Potential change:  1



Combined Maximum 
and Minimum

• Compare X with W


• Case 1:    Net change (-1,0,1,0)


• Case 2:   Net change(-1,0,0,1)


• The adversary can prevent Case 2 by decreasing  


• Possible because this is the first time that we look at 



• Potential changes by 

x ∈ X, w ∈ W, x < w

x ∈ X, w ∈ W, x > w

x

x
1
2



Combined Maximum 
and Minimum

• Compare  with 


• similar as before

X L



Combined Maximum 
and Minimum

• Compare  with 


• The element in  changes to either  or 


• Net change (-1, 1, 0, 0) or (-1, 0, 1, 0 )


• Potential change 

X Q

X W L

1
2



Combined Maximum 
and Minimum

• Compare W with W


• One element looses


• Net change (0, -1, 0, 1)


• Potential change 1



Combined Maximum 
and Minimum

• Compare  with 


• Adversary guarantees that the element in  wins by 
making all of them bigger


• This works because each element in  has only seen 
wins and that does not change if the elements are 
made bigger.


• No change

W L

W

W



Combined Maximum 
and Minimum

• Compare  with 


• Since the elements in  have always won, the 
adversary can make them larger


• No net change

W Q

W



Combined Maximum 
and Minimum

• Comparisons with  are the same as with 


• Comparisons within  are useless, but make no changes

L W

Q



Combined Maximum 
and Minimum

• With the help of the adversary


• Potential changes by at most 1


• Initial Potential:  


• Final Potential:  


• Need at least  comparisons

3
2

n

2
3n − 4

2



Selection Sort
Thomas Schwarz, SJ



Selection Sort
• Divide array in sorted and unsorted parts


• At each step, insert the minimum of the unsorted part 
at the end of the sorted part



Selection Sort
• Example:  


• 


• Array is divided into a sorted (green) and unsorted 
portion


• We keep the index  of the first element in the unsorted 
portion

6 3 5 1 02 4

i



Selection Sort
• Example:


•     


• Find the index  of the minimum of the elements in the 
unsorted array


• Implemented in numpy as argmin


• In Python, write your own function


• Minimum here is 0:      

6 3 5 1 02 4

i = 0

j

j = 6

j = np.argmin(arr[i:])+i



Selection Sort
• Example:


• 


• Now swap the elements at  and 


• Increment  to 


•

6 3 5 1 02 4

i j

i 1
63 5 10 24

arr[i], arr[j] = arr[j], arr[i]

i=i+1



Selection Sort
• Example:


• 


• Minimum is now 1:  


• 


• Swap array elements at  and  and increment 


•

63 5 10 24

j = 5

63 5 10 24

i j i

63 510 2 4



Selection Sort
• Example:


• 


• 


•

63 510 2 4

63 510 2 4

63 510 2 4



Selection Sort
• Example:


• 


•    


•

63 510 2 4

63 510 2 4

63 510 2 4



Selection Sort
• Example:


• 


• 


•

63 510 2 4

63 510 2 4

63 510 2 4



Selection Sort
• Example:


• 


• 


•

63 510 2 4

63 510 2 4

3 510 2 4 6



Selection Sort
• Example:


• 


• We can stop at  because the array is 
now sorted


•

3 510 2 4 6

i = len(arr) − 1

3 510 2 4 6



Selection Sort
• Performance


• At pass :


• Need to find minimum among  elements


• Costs  comparisons


• Total costs:  

 

comparisons


•

i

n − i

n − i − 1

(n − 1) + (n − 2) + … + 2 + 1 + 0 =
1
2

n(n − 1)

Θ(n2)



Selection Sort
• In practice:


• Among quadratic sorting algorithms:


• Usually the best performing one



Sorting by Comparison
• Many sorting algorithms use comparisons


• An algorithm needs to be able to sort with all orders of 
inputs, i.e. distinguish between  arrangements of the 
input by order 


• assuming all elements are different

n!



Sorting by Comparison
• Sorting algorithm makes a comparison, then decides on 

what to do


• Can be represented as a binary tree



Sorting by Comparison
a1 < a2

a1 < a3a2 < a3

a1 < a2 < a3

yes no

yes

a1 < a3

no

a1 < a3 < a2

yes

a3 < a1 < a2

no

a2 < a1 < a3

yes

a2 < a3

no

a2 < a3 < a1

yes

a3 < a2 < a1

no

A fictitious algorithm for sorting three elements

as a Decision Tree



Sorting by Comparison
• Represent any comparison based algorithm by such a 

tree


• Any run of the algorithm represents a path from the root 
to a leaf node


• Leaf nodes represent an algorithm finishing,


• So they need to have an ordering, i.e. a permutation of 
the input array



Sorting by Comparison
• How many steps does a tree with  leaves have?


• A tree of height  has how many leaves?


• Height 0: only root, one leaf


• Height 1: only root plus one or two leaves:  


• Height 2: at most two nodes at height one have at most 
 leaves


• Induction: Height  has at most  leaves 

N

h

≤ 2

≤ 22

h 2h



Sorting by Comparison
• Relationship between height of decision tree and number of 

elements to be sorted:


• Need to have at least  leaves:


•    


• which implies


• 


•     


•     

n!

2h ≥ n!

h ≥ log2(n!) =
1

log(2)
log(n!)

≈
1

log(2)
n log(n) − n + 1

= Θ(n log(n))



Sorting by Comparison
• Since the height of the decision tree is the worst time 

runtime, we have


• The runtime of a comparison based sorting algorithm is 
at least Θ(n log(n))



Better Sorting 
Algorithms



Heap-Sort
• Example of a sorting algorithm that uses additional space


• But variants make it an in-place algorithm


• A version of selection sort with the right data structure for the 
unordered part


• Idea:


• Insert all elements into a heap


• Then empty the heap with calls of extract-min


• Get the same elements back, but in order


• Performance:


• ≈ log(1) + log(2) + … + log(n − 1) + log(n) ≈ log(n)n



Heap-Sort
• Details:


• Step 1: convert array into a maximum heap


• Idea: 


• Elements in the second half are all leaves


• Form their own sub-heaps


• Need to learn how to convert two sub-heaps and 
a parent into a proper head



Heap-Sort
• How to heapify two sub-heaps?


• If  and : ensemble already a heap


• If : exchange  and 


• But now the left might no longer be a heap

t ≥ l t ≥ r

l = max({t, l, r}) t l

l r

t

heap heap



Heap-Sort

• Because the root of the left heap has become smaller, the 
heap property there is no longer guaranteed


• We need to continue heapifying there

l r

t

heap heap

t r

l

heap heap
l1 r1



Heap-Sort
def heapify(arr, i):

   l, r = left(i), right(i)

   if l < len(arr):

      if arr[i] < arr[l]:

         largest = l

      else:

         largest = i

   if r < len(arr):

      if arr[r] > arr[largest]:

         largest = r

   if largest == i:

      return 

   else: 

      arr[i], arr[largest] = arr[largest], arr[i]

      heapify(arr, largest)



Heap-Sort
• Performance of heapify:  


• To guarantee result is a heap:  


• left and right subheap need to be heaps indeed

O(log(n))



Heap-Sort
• To create a heap:


• use heapify working back


• Can start at location 


• We can even show: runtime of make_heap is linear   

⌊len(arr)/2⌋
def make_heap(arr):

   for i in range( int(len(arr)/2), 0, -1):

      heapify(arr,i)



Heap-Sort
• Heap-sort:


• Make array into a heap


• Extract the maximum


• move it to the last element of the array


• Repeat



Heap-Sort

• Performance:


• Making the array into a heap:  


• Extracting the maximum and putting it at the end: 


• Heapify the array again:  

O(n)

Θ(1)

O(log2(n) + O(log2(n − 1)) + … + O(log2(2)) + O(log2(1)))

def heap_sort(arr):

   for i in range(len(arr)-1, 1, -1):

      arr[0], arr[i] = arr[i], arr[0]

      arr.heap_size = arr.heap_size - 1

      heapify(arr, i)



Heap Sort Example
• Example


• 


• First phase: heapify into a max heap


• Easier to start indices with 1


• 


• 


• Heap property is true

13 12118 1 51069 3 24 7 0

j = 7, l = 14, r = 15
13 1211 8 1 51069 3 24 7 0



Heap Sort Example
• 


• 


• Heap property maintained

j = 6, l = 12, r = 13
13 1211 8 1 51069 3 24 7 0



Heap Sort Example
• 


• 


• Heap property needs to be restored:


• Exchange 8 for 12


• 


• No need to continue

i = 5, left = 10,right = 11
13 1211 8 1 51069 3 24 7 0

131211 81 51069 3 24 7 0



Heap Sort Example
• 


• 


• Exchange 4 with 7


•

j = 4, l = 8, r = 9
131211 81 51069 3 24 7 0

131211 81 51069 3 247 0



Heap Sort Example
• 


• 


• Exchange 3 with 13


• 


• Test result : exchange 3 with 5


•

j = 3, l = 6, r = 7
131211 81 51069 3 247 0

13 1211 81 51069 3 247 0

j = 7, l = 14
13 1211 815 1069 3247 0



Heap Sort Example
• 


• 


• Exchange 11 with 12


• Then check heap property with 


•

j = 2, l = 4, r = 5
13 1211 815 1069 3247 0

i = 4, l = 8, r = 9
1312 11 815 1069 3247 0



Heap Sort Example
• 


• 


• Exchange 9 with 13 and check 


•

j = 1, l = 2, r = 3
1312 11 815 1069 3247 0

i = 3, l = 6, r = 7
13 12 11 815 1069 3247 0



Heap Sort Example
• Second phase:


• Extract maxima:


• 


• Exchange 13 with 3 and heapify:


• 


• Exchange 3 with 9


• 


• Exchange 3 with 11


•

13 12 11 815 1069 3247 0

1312 11 815 10693 247 0

1312 11 815 10693 247 0

1312 11 815 1069 3 247 0



Heap Sort Example

• 


• Exchange 3 with 10


• 


• Can stop here

1312 11 815 1069 3 247 0

1312 11 81510 69 3 247 0



Heap Sort Example
• Extract maximum again


• Exchange 12 with last element of heap


• 


• Now heapify again


•  (change 2 with 10)


•  (change 2 with 8)


•   (can stop here)

131211 81510 69 32 47 0

131211 81510 69 32 47 0

131211 81510 69 32 47 0

131211 8 1510 69 3 247 0



Heap Sort Example
• Extract maximum:


• 


• Heapify:


• 


• 


•

1312118 1510 69 3 2470

1312118 1510 69 3 2470

1312118 1510 69 3 247 0

1312118 1510 69 3 247 0



Heap Sort Example
• Extract maximum


• 


• Heapify


• 


• 


• We can stop here because the left and right index point 
to elements outside the heap

1312118 15 1069 32 47 0

1312118 15 1069 32 47 0

1312118 15 1069 3 2 47 0



Heap Sort Example
• Extract maximum


• 


• Heapify


• 


• 


•

1312118 15 106 93 2 470

1312118 15 106 93 2 470

1312118 15 106 93 2 47 0

1312118 15 106 93 247 0



Heap Sort Example
• Extract maximum


• 


• Heapify


• 


• 


•

131211815 106 93 2470

131211815 106 93 247 0

131211815 106 93 247 0

13121181 5 106 93 247 0



Heap Sort Example
• Extract maximum


• 


• Heapify


• 


•

13121181 5 106 93 24 70

13121181 5 106 93 24 70

131211815 106 93 24 70



Heap Sort Example
• Extract maximum


• 


• Heapify


• 


•

131211815 106 93 24 70

131211815 106 93 24 70

131211815 106 9324 70



Heap Sort Example
• Extract maximum


• 


• Heapify


• 


•

13121181 5 106 9324 70

13121181 5 106 9324 70

13121181 5 106 93 24 70



Heap Sort Example
• Extract maximum


• 


• Heapify


• 


•

13121181 5 106 93 2 4 70

13121181 5 106 93 2 4 70

13121181 5 106 93 2 4 70



Heap Sort Example
• Extract maximum


• 


• Heapify


•

13121181 5 106 932 4 70

13121181 5 106 932 4 70



Heap Sort Example
• Extract maximum


• 


• Heapify


•

13121181 5 106 932 4 70

13121181 5 106 932 4 70



Heap Sort Example
• Extract maximum


• 


• Extract maximum


•

13121181 5 106 932 4 70

13121181 5 106 932 4 70



Linear Time Sorting
• Counting sort


• Assume we want to sort numbers in 


• Create a dictionary with keys in 


• E.g. as an array Int(1:k)


• Walk through the array, updating the count


• Once the count is done, go through the dictionary in 
order of the keys, emitting as many keys as the count

{1,2,…, k − 1,k}

{1,2,…, k − 1,k}



Linear Time Sorting
• Counting sort:


• 


• create a counting array:


• 


• Walk through the array and calculate counts


• 


• Emit keys according to count


• 1 2 2 2 3 3 3 4 4 5 5 7 8 9 10 10 10 12

10 12 443 3 28 9 55 2 10 1 2 710

1: 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: 12: 13:

1: 1 2: 3 3: 3 4: 2 5: 2 6: 0 7: 1 8: 1 9: 1 10: 3 11: 0 12: 1 13: 0



Linear Time Sorting
• If there are  elements in the array, then counting sort 

uses 


•   to create and evaluate the counting array


•   to update the counting array


• Therefore:  counting sort run-time is 

n

∼ k

∼ n

Θ(n + k)



Linear Time Sorting
• Radix Sort


• Imagine sorting punch cards with by ID in the first 
columns



Linear Time Sorting
• Simple Method:


• Create heaps of cards based on the first digit


• Then recursively sort the heaps



Linear Time Sorting
• Better method:


• Sort according to the last digit


• Then use a stable sort to sort after the second-last 
digit


• Then use a stable sort to sort after the third-last digit



Linear Time Sorting
• Stable sort:


• Leave order of elements with the same key during 
sorting


• Insertion sort, merge sort, bubble sort, counting sort 
are all stable


• Heap sort, selection sort, shell sort, and quick sort are 
not



Linear Time Sorting
• Radix sort:


• for i in range(length(key), 0, -1):

       stable_sort on digit i of key




Linear Time Sorting
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Linear Time Sorting
• Radix sort correctness


• What would be a loop invariant?



Linear Time Sorting
• Assume  keys of  digits in 


• Use counting sort to sort in time 


• Radix sort then takes  time

n d {0,1,…, r − 1}

Θ(n + r)

Θ(d(n + r))



Linear Time Sorting
• Given  numbers of  bits each


• Assume 


• Choose .


• Divide the -bit numbers into “digits” of length 


• Thus, each round of radix sort takes time 


• There are  rounds


• So, radix sort takes  time!

n b

b = O(log(n))

r = ⌊log2(n)⌋

b r

Θ(n + 2r)

⌈
b
r

⌉

Θ(
b
r

(n + 2r)) = Θ(
b
r

(n + n)) = Θ(n)


