
Dictionaries
Python

Dictionaries
• Python has a efficient association data structure — the

dictionary

• Dictionary pairs keys with values

• Useful for: indices

• Useful for: translations

• Useful for: quick lookups

• E.g.: first letters —> full email address

• E.g.: human-readable URL —> IP address

• …

Dictionaries
• Dictionaries are key-value stores

• Keys — anything, but needs to be immutable

• Remember: Lists are mutable, strings are immutable

• Value — anything

Dictionaries
• Dictionaries are created by using curly brackets

• Can use lists

dicc = {1: ‘uno’, 2: ‘dos’, 3: ‘tres’}

• Or can use assignment

 dicc = {}

 dicc[1] = “uno”

 dicc[2] = “dos”

 dicc[3] = “tres”

• Values are assigned / retrieved using the bracket notation

Dictionary
• Dictionary dicc={}

• Accessing values:

dicc[‘key’]

• With default value

dicc.get(key, default_value)

• Or with if - else

if key in dicc:

• Creating / changing values

 dicc[‘key’] = value

Dictionary
• Deleting from a dictionary

dicc = {}

• Use the del keyword

• Raises a key error if the key is not in the dictionary

if key in dicc:

 del dicc[key]

• Use the pop method, which returns the value

value = dicc.pop(key)

value = dicc.pop(key, default)

Dictionary
• Checking for existence

• Use the “in” keyword

Dictionaries
• A simple program that “learns” Spanish words

def test():
 dicc = {}
 while True:
 astr = input("Enter an English word: ")
 if astr == "Stop it":
 return
 elif astr in dicc:
 print(dicc[astr])
 else:
 print("I have not yet learned this word")
 val = input("Please enter the Spanish word: ")
 dicc[astr] = val

Dictionaries
• Dictionaries have an internal structure

• You will learn in Data Structures how to build dictionaries
yourselves

• For the moment, enjoy their power

• You can print dictionaries

• You will notice that they change structure after inserts and
not reflect the order in which you inserted elements

• This is because they optimize access

Dictionaries
• Deleting all entries in a dictionary

• use the clear() method
• Deleting an entry without fear of creating a key

error
• Use an if statement
• Use pop with a second argument None

• dicc.pop(1, None)

Dictionaries
• Looping over keys

• Simplest:
• for number in dicc:

• iterkeys() or iter works the same way
• for number in dicc.iterkeys():

• for number in iter(dicc):

Some Uses of Dictionaries
• Dictionaries can be used to count things.

• Example: Count the number of letters in a file.
• We open the file with encoding latin-1 so that

there are no encoding errors

alphabet = "abcdefghijklmnopqrstuvwxyz"

with open("alice.txt", encoding = "latin-1") as infile:
 dicc = {}
 for letter in alphabet:
 dicc[letter]=0

Some Uses of Dictionaries
• Create and initialize a dictionary

• We are only interested in letters

alphabet = "abcdefghijklmnopqrstuvwxyz"

with open("alice.txt", encoding = "latin-1") as infile:
 dicc = {}
 for letter in alphabet:
 dicc[letter]=0

Some Uses of Dictionaries
• Read the file line by line.

• Read each letter in the line
• After changing to lower case, update dictionary

alphabet = "abcdefghijklmnopqrstuvwxyz"

with open("alice.txt", encoding = "latin-1") as infile:
 dicc = {}
 for letter in alphabet:
 dicc[letter]=0
 for line in infile:
 for letter in line:
 letter=letter.lower()
 if letter in alphabet:
 dicc[letter]+=1

Some Uses of Dictionaries
• Now process the dictionary

• Calculate the sum of values (i.e. the counts)
• Pretty-print the results

for letter in alphabet:
 cum += dicc[letter]
for letter in alphabet:
 print("{:1s} {:5d} {:5.2f}%”.format(
 letter, dicc[letter], dicc[letter]/cum*100))

Some Uses of Dictionaries
• Using lists as dictionary values

• in order to create an index of words in a file

Some Uses of Dictionaries
• Open file with encoding “latin-1”

• Read file line by line
• Break line into words
• Normalize words by stripping and lowering

with open("alice.txt", encoding = "latin-1") as infile:
 index = {}
 word_count = 0
 for line in infile:
 for word in line.split():
 word_count += 1
 word = word.lower().strip(",.;:?![]-'\"")

Some Uses of Dictionaries
• Add word to dictionary if long enough

with open("alice.txt", encoding = "latin-1") as infile:
 index = {}
 word_count = 0
 for line in infile:
 for word in line.split():
 word_count += 1
 word = word.lower().strip(",.;:?![]-'\"")
 if len(word)>7:
 if word in index:
 index[word].append(word_count)
 else:
 index[word] = [word_count]

Some Uses of Dictionaries
• Print out results if word is frequent enough

for word in index:
 if len(index[word])>2:
 print(word, index[word])

