
Midterm 2
Preparation

Python

Thomas Schwarz, SJ, Marquette University

Controlling Output
• Controlling print statements is necessary for good-looking

terminal output

• Two avenues:

1. Resetting default parameters in print

2. Using the format statement to create good-looking
strings

Controlling Output
• Default parameters in print

• sep : The separator between
different arguments

• end: The terminating string

• file: The file to be written to.
Default is standard I/O

• flush: If set to True, write
immediately

Controlling Output
• The format statement allows us to compose strings

• Consists of a blueprint string to which the format method
is applied.

• The insertion of the parameters is controlled by the
contents of the curly bracket.

"{1:5.2f} {0:5s} {2:3d}".format("hello", 3.142, 123)

' 3.14 hello 123'

Blueprint Parameters

Controlling Output
• The curly brackets indicate places where data gets

inserted into the string

• If they are left empty, then parameters get filled in in
order

• Otherwise, if they contain just numbers, the numbers
specify the coordinate in the arguments tuple

Controlling Output
• After a colon, we can specify how the argument is interpreted

• Types are:

• s — string

• e, E, f, F, g, G — floating point in exponential or fixed point
format; g means general and switches between exponential and
fixed

• d, n — integer

• b, o, x — integer converted to binary, octal, or hexadecimal
format

• c - character: integer is converted to unicode

• n - number with separation according to locale

Controlling output
• Before the type specifier, we can give size of the field

• 10s — ten characters

• 6.2f — six digit fixed point number with two digits after
the point

• We can also specify the alignment:

• < — left, > — right, ^ — center

Controlling output
• Nice examples:

• We can use the percentage sign inside the brackets to
specify percentages

Controlling output
• Nice examples:

• We can specify the filler

Controlling output
• In Python 3.6 and later, you can use fstrings.

• The syntax is simpler

• Put an f or F before the beginning quotation mark

Controlling Loops
• Python has two statements to control behavior within a

loop

• continue — stops the execution of the current loop
and starts the next loop

• break — stops the execution of the loop completely

Controlling Loops
• Create a list of

random numbers 1/r
with -10 <= r <= 10:

• If the random
number is zero,
we just go to the
next iteration

import random

def create_random_inverses(number):
 result = []
 while len(result)<number:
 r = random.randint(-10, 10)
 if r==0:
 continue
 result.append(1/r)
 return result

if __name__ == "__main__":
 print(create_random_inverses(50))

Controlling Loops
• Trying to find a number

such that f(x) is close to
0.

• Warning: This is not a
good way to solve an
equation.

• It’s like hunting deer
by just shooting in the
dark.

• People might get hurt!
Deers however are
usually safe.

def f(x):
 return math.sin(x)**3+
 math.log(x,2)/math.exp(x-1)

def solve(f, a, b):
 while True:
 guess = random.uniform(a,b)
 if abs(f(guess)-0) < 0.001:
 break
 print(f"{guess} is now close to
 being a solution")

if __name__ == "__main__":
 solve(f, 0, 11)

Lists, Dictionaries, Tuples,
Sets,

• You are given a string. Return the same string with all
white spaces removed.

Solution
1. Use a for loop.

def remove_white_spaces(string):
 result = []
 for letter in string:
 if letter not in " \t\n":
 result.append(letter)
 return "".join(result)

Empty list for the result.

Walk through string.

Select which letters to append

Return result list as a string

Solution
2. Use list comprehension.

def remove_white_spaces_c(string):
 result = [c for c in string if c not in " \t\n"]
 return “".join(result)

Notice the space!

Lists, Dictionaries, Tuples,
Sets,

• You are given two strings. You can assume that they have
the same length. Create a dictionary that associates the
first character in string 1 to the first character in string 2,
the second character in string 1 to the second character
in string 2, … Previous associations might be overwritten

• Example:

• “apple”, “banana” —> {‘a’: ‘b’, ‘p’: ’n’, ‘l’: ‘a’, ‘e’: ’n’}

• ‘p’ was associated first with ‘a’, but then the
association changed to ’n'

Solution
1. Use a for loop over the indices

def associate(string1, string2):
 dictionary = {}
 for i in range(min(len(string1), len(string2))):
 dictionary[string1[i]]=string2[i]
 return dictionary

Make sure to avoid an index error

Solution
• Or use dictionary comprehension and zip

def associate_c(string1, string2):
 return {key:value for key, value in zip(list(string1), list(string2))}

Convert strings into lists

zip to make a list of tuples

tuple extraction

dictionary comprehension

Solution
• Or even simpler, let Python do the dirty work:

• zip works on iterables like strings, not only on lists

• Keyword dict makes a dictionary out of a list of pairs

def associate_z(string1, string2):
 return dict(zip(string1, string2))

Lists, Dictionaries, Tuples,
Sets,

• You are given a translation dictionary with letters for keys
and values.

• Write a function that substitutes the letters in a string
according to the dictionary.

• Example: {‘a’: ‘1’, ‘e’: ‘2’, ‘i’: ‘3’, ‘o’: ‘4’, ‘u’: ‘5’}

• “thomas schwarz” —> “th4m1s schw1rz”

Solution
• Use a for loop, aggregating the new string as a list of

characters

def translate(string, dictionary):
 result = []
 for letter in string:
 if letter in dictionary:
 result.append(dictionary[letter])
 else:
 result.append(letter)
 return "".join(result)

Solution
• Or use a ternary operator

• value1 if cond_is_true else value2

• Expression is value1 if the condition is true, otherwise it is
value 2

• Then we can use list comprehension

def translate_c(string, dictionary):
 return "".join([dictionary[letter] if letter in dictionary
 else letter for letter in string]

