
Object Oriented
Programming in Action

Object Oriented Analysis
and Design

• Find and define the objects

• Organize the objects

• Describe how the objects interact with one another

• Define the external behavior of the objects

• Define the internal behavior of the objects

Robots Game
• Robots Game

• Turn-based game
used to teach the
navigation keys of text
editor vi

• Invented for Unix

• Still available as a
Linux console game

Game Description
• The player controls an avatar in a two-dimensional playing field

• The player can move left and right, upwards and downwards and also move
diagonally

• A number of robots try to kill the player by reaching the same space on which
the avatar is

• Robots only move up and down, left and right, but not diagonally

• If robots collide with each other, they die and leave behind a heap

• If the avatar or a robot moves into a heap, they also die

• The player can use a teleportation device that places the player in a random
location in the field, possibly next to a robot or a heap, but not in a heap.

• If all robots are dead, then the player has won the level and advances to a
higher level with more robots

Game Design
• Designing something complex is very difficult

• Can use design patterns

• We are going to use the Model-View-Controller pattern

• Model: The data and its business logic

• View: The window on the screen

• Controller: The glue between the two

Game Design
• Model is independent of view and controller

• You can work simply in the model to implement the
business logic

• Regardless of visual presentation and user interface

Game Design

• MVC is popular in web development

• Used in many frameworks such as Django, web2py,
Pyramid, ...

User

Controller Model

ControllerView

uses manipulates

returns data

updatesrenders

Game Design
• Model - The logic of the application

• Model has a state and methods for changing the state
such as a player move

• We should be able to change the controller and the
view without changing the logic

Game Design
• View - the display of the model

• View receives data from the model through the
controller

• Responsible for visualization

• Does not contain complex logic

• This belongs in the controller and the model

Game Design
• Controller - Glue between Model and View

• Controller receives data from user requests and sends
it to other parts of the system

• Controller also receives data from the model and
passes them on to the View

Game Design
• Design recommendations:

• Smart Models

• Thin controllers

• Dumb viewers

Game Design
• Modeling the Model

• Look through the description

• Identify substantives and verbs

• We have actors:

• Avatar

• Robots

• Heap

• We have the playground

Game Design

Heap

Location
Collision

Robot

Location
Collision

Move

Avatar

Location
Collision

Move

Playground

Grid
contains robots,
heaps, avatars

• Create cards with the name of the object

• Add notes on what they need to interact with the other
parts.

Game Design
• Because we use location so often, we pull it into its own

class.

• We also need to figure out how the View and the Control
are interacting with the model.

• View needs to get coordinates for all entities in order to
display them

• Control needs to steer the avatar.

• This is done with a direction

• which we make into another class.

Game Design

Location
__equal__

change

Direction

Heap
has a

Robot
has a

Avatar
has a

moves moves
collides

collides
collides

Game Design
• Design of View

• View depends on the underlying architecture

• We are going to rebuild the game using Tkinter
graphics soon

• Currently, the view is based on an Idle shell ASCII art

• Need to move geometry between Controller and View

• Need to get things to display from controller

• Need to move decisions from View to Controller

Game Design
• Design of Control

• Needs to start the game: Play

• Needs to transmit the model data to view

• Needs to obtain User input

Game Design
Command

run_game()

Geometry

width

height

View

clear_screen()

draw_screen()

Model

update()

Location

x

y

==

generate_ran‐
dom_locality()

update_loca‐
tion()

get()

Direction

move_towards()

avatar

robots

heaps

Game Design
• Write all the substantives on little cards

• You get a design like this one

• Now you go and expand all of the cards with methods

• The design will change as you go through it

Game Design

View Controller Model

Robot
RobotRobotRobot

Robot

Robot

Heap

Heap
Heap

Heap

Avatar

DisplayListGame
Geometry

Direction

User Input

Display

User
Interface

Play

Implementation
• Now it is time to start implementing

• During implementation, design issues can emerge and
force a redesign

•

Software Engineering Errors
• All implementations and designs will contain errors

• Design errors are easiest to fix during design

• Implementation errors are easiest to fix during
implementation

• Need a thorough testing phase

Testing
• Need something better than just playing and fix arising

issues

• Systematic

• For unit and for the whole game

