
Object Oriented 
Programming in Action



Object Oriented Analysis 
and Design

• Find and define the objects


• Organize the objects


• Describe how the objects interact with one another


• Define the external behavior of the objects


• Define the internal behavior of the objects



Robots Game
• Robots Game


• Turn-based game 
used to teach the 
navigation keys of text 
editor vi


• Invented for Unix


• Still available as a 
Linux console game



Game Description
• The player controls an avatar in a two-dimensional playing field 


• The player can move left and right, upwards and downwards and also move 
diagonally


• A number of robots try to kill the player by reaching the same space on which 
the avatar is


• Robots only move up and down, left and right, but not diagonally


• If robots collide with each other, they die and leave behind a heap


• If the avatar or a robot moves into a heap, they also die


• The player can use a teleportation device that places the player in a random 
location in the field, possibly next to a robot or a heap, but not in a heap.


• If all robots are dead, then the player has won the level and advances to a 
higher level with more robots



Game Design
• Designing something complex is very difficult


• Can use design patterns


• We are going to use the Model-View-Controller pattern


• Model:  The data and its business logic


• View:  The window on the screen


• Controller:  The glue between the two



Game Design
• Model is independent of view and controller


• You can work simply in the model to implement the 
business logic 

• Regardless of visual presentation and user interface



Game Design

• MVC is popular in web development


• Used in many frameworks such as Django, web2py, 
Pyramid, ...
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Game Design
• Model - The logic of the application


• Model has a state and methods for changing the state 
such as a player move


• We should be able to change the controller and the 
view without changing the logic



Game Design
• View - the display of the model


• View receives data from the model through the 
controller


• Responsible for visualization


• Does not contain complex logic


• This belongs in the controller and the model



Game Design
• Controller - Glue between Model and View


• Controller receives data from user requests and sends 
it to other parts of the system


• Controller also receives data from the model and 
passes them on to the View



Game Design
• Design recommendations:


• Smart Models


• Thin controllers


• Dumb viewers



Game Design
• Modeling the Model


• Look through the description


• Identify substantives and verbs


• We have actors:


• Avatar


• Robots 


• Heap


• We have the playground



Game Design
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• Create cards with the name of the object


• Add notes on what they need to interact with the other 
parts.



Game Design
• Because we use location so often, we pull it into its own 

class. 


• We also need to figure out how the View and the Control 
are interacting with the model.


• View needs to get coordinates for all entities in order to 
display them


• Control needs to steer the avatar.


• This is done with a direction


• which we make into another class.



Game Design
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Game Design
• Design of View


• View depends on the underlying architecture


• We are going to rebuild the game using Tkinter 
graphics soon


• Currently, the view is based on an Idle shell ASCII art


• Need to move geometry between Controller and View


• Need to get things to display from controller


• Need to move decisions from View to Controller



Game Design
• Design of Control


• Needs to start the game: Play


• Needs to transmit the model data to view


• Needs to obtain User input



Game Design
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Game Design
• Write all the substantives on little cards 


• You get a design like this one


• Now you go and expand all of the cards with methods


• The design will change as you go through it



Game Design
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Implementation
• Now it is time to start implementing


• During implementation, design issues can emerge and 
force a redesign


•



Software Engineering Errors
• All implementations and designs will contain errors


• Design errors are easiest to fix during design


• Implementation errors are easiest to fix during 
implementation


• Need a thorough testing phase



Testing
• Need something better than just playing and fix arising 

issues


• Systematic


• For unit and for the whole game


