
Databases
Data at Scale

Early History of Databases
• Even before the computer age, humanity stored and used data

• Organization of data is often key to effective functioning of
organizations, such as the development of Bureaucracy in
Napoleonic France

• 1950s: Computers are first used for commercial purposes

• 1953: American Airlines and IBM start investigating and
working on an airline reservation system

• 1963: SABRE is fully functional after an effort of 400
man-years

• 2017: Still going strong as an independent service
provider

Early Databases
• First uses of computers for business purposes were

specific to the data

• Storage medium of data

• Tape, disks, paper

• Definition of records

• Logical and physical arrangement of data

Data Modeling
• In order to be processed, data needs to be put into

schemes so that data items can be found

• Only now are we getting ready to abandon structured
data

• Data gains value by the way it can be used

• Usually, making new uses of data implies a
reorganization of data

Databases
• Data needs to be organized

• The entity/relationship model is one way to represent data
graphically

• Entity sets

• Formed by abstract objects of some sort

• Attributes

• Properties of an entity

• Relationships

• Connections between entity sets

E/R Model
• E/R diagrams

• Entity sets are represented by triangles

• Attributes are represented by ovals

• Relationships are represented by diamonds

• Relationships can be

• one-one

• one-many

• many-one

E/R Model
• Example: A presidential database for the last century

• Inspired by: A. Michaels, B. Mittman, C. Carlson: A Comparison of the Relational and CODASYL
Approached to Data-Base Management, ACM Computer Surveys, vol. 8(1), March 1976

• Keywords: Presidents, elections, losers, native-sons,
congresses

Presidents

• Start out with the attributes of a president

• Presidents have a name, a birth date, and a death date, though the latter might still be in the
future

• They belong to parties, but parties cannot be attributes, since some presidents belonged to more
than one party.

• Abraham Lincoln was a Whig who joined the Republican party when it was founded

• Monroe did not want to belong to a party, but he was not a Federalist

President

Name StateParty

Brith Date Death DateName

belongs-to married-to born-in participated-in

Election

served-with

Congress

Presidents

• Start out with the attributes of a president

• Some presidents where married more than once, so the
spouse cannot be an attribute

President

Name StateParty

Brith Date Death DateName

belongs-to married-to born-in participated-in

Election

served-with

Congress

Presidents

• Relationships are with other entities.

• We have an anemic entity name that stands for a person

• By design, we assume that the name of the first lady (first spouse?) is the only thing that we
care about.

• Parties similarly are entities with only one attribute, namely their name

• States, Elections, and Congresses however are more involved.

• Even that is complicated: Andrew Jackson’s marriage might have been illegal and therefore
void

President

Name StateParty

Brith Date Death DateName

belongs-to married-to born-in participated-in

Election

served-with

Congress

Presidents

• The State-of-the-Union part of the E/R model

• A state has the “born-in” or “native-son” relationship with presidents

• A state has attributes: her name, the year of admission into the union (whatever that might be
for Delaware or Vermont), an official population number, and the votes in the electoral college

• Strictly speaking, this is not good design since the number of votes in the electoral college
and the official population varies with each new census. A reelected president might span two
different census and in the case of F. D. Roosevelt, three.

President

State

born-in

Name

Year of
admission

Votes in electoral
college

Population

Presidents

• Elections (in the electoral college) provide even more challenges.

• Try to extend the data model to give information about the votes of the candidates!

• In the current model, we only have votes for and votes for other than the winner

• It would be nice to have the names of people with votes in the college together with
their party

• This is made more complicated because we can have several people. For example,
Wallace got 46 electoral votes as a third-party candidate and the 1860 election had
four, even though Lincoln garnered a comfortable majority in the college

President

participated-in

Election

year aye-votes nay-votes

Group Task
• Draw an E/R diagram for the data given in Figure 1.

However, use your knowledge of US history in order to
determine the capacity of your E/R diagram to capture all
reasonable past, present, and future presidential
elections.

Databases
• Databases need to

• allow users to retrieve and modify data

• Users have different capacities for programming, so a simpler model is
needed

• For performance reasons, this needs to be done in parallel

• allow database administrators to change the physical and logical layout of the
data (for performance tuning)

• provide safety guarantees

• Access control for users

• Checks to find implausible updates

• Allow data to be hidden from the user

• Allow surviving system crashes and hardware / software failures without
dataloss

Cautionary Aside
• A cautionary tale about mixing levels

• IBM invented the hard drive

• IBM 305 RAMAC computer system announced September 13, 1956

• Decided on a block size of 512B

• Very reasonable but now replaced with 4KB blocks

• Noticed that hard drives were often used for what we now call dictionary look-ups

• Key is small number of bytes, value is contained in a block

• Decided to offer disks that had an additional 8B key

• Feature was never really used, but meant that for compatibility, all IBM drives had
to have 520B blocks

• So, IBM disks only had 512/520 of their physical capacity (some 1.6%)

• Moral: Be careful where in a hierarchy you are optimizing

Database Organizations
• 1970 — Existing approaches:

• A hierarchical model of data organization — IBM
Information Management System (released 1960)

• Data is organized in a tree and access goes from top to
bottom

• Administration —> President —> State —> Population

• Works well with one-one and one-many relationships

• Based on how data would be stored

• Access is by programming navigation in a tree

• Security, transactions, etc. are difficult to program

Database Organizations
• 1970 — Existing approaches:

• CoDaSyL: Conference/Committee on Data Systems
Languages formed 1959

• Develops the network model for data as well as query
languages and data definition languages

Database Organization
• Network model

• Has Records and Sets

• Plus an entry into the system, called System

Database Organization
• Network model example

System

President

Administration

State-of-Union

Administration-headed

St
ate

ho
od
-d
uri
ng

native-sons

Election

el
ec

tio
ns

-w
on

Congress

Congress-Press-Link

con
gre

ss-
ser

ved
pr
es

id
en

t-s
er
ve

d

Database Organization
• Network model example

• Records are for
president, administration,
election, congress, state

• Sets are represented by
arrows

• E.g. a president record is
associated with a set of
elections that the
president has won

• Sets allow us to
represent one-one and
one-many relationships

• Not shown are the
attributes of the records

System

President

Administration

State-of-Union

Administration-headed

St
ate

ho
od
-d
uri
ng

native-sons

Election

el
ec

tio
ns

-w
on

Congress

Congress-Press-Link

con
gre

ss-
ser

ved

pr
es

id
en

t-s
er
ve

d

Database Organization
• Network model example

• Presidents can
change during a
congress (murder of
Kennedy and
resignation of Nixon)

• A president usually
serves with several
congresses

• To model this many-
many relationship, a
special record needs
to be invented, the
Congress-Press-Link
record

System

President

Administration

State-of-Union

Administration-headed

St
ate

ho
od
-d
uri
ng

native-sons

Election

el
ec

tio
ns

-w
on

Congress

Congress-Press-Link

con
gre

ss-
ser

ved

pr
es

id
en

t-s
er
ve

d

Database Organization
• We can observe that the hierarchical and less the network

model of databases is tied to the logical organization of
data access

• Network model based databases were commercially
successful

• In order to allow untrained or untrainable users to interact
with them, manipulation mechanisms became more
sophisticated

• Network model based databases still have problems with
parallelism and record protection

Relational Databases
• E. F. Codd (IBM, San José, CA) proposed relational

databases in a 1970 paper

• Pressured IBM into developing System R, with a non-
relational access language called Sequel

• Based on preprints of papers, Ellison founded Oracle,
with a similar language called SQL

Relational Databases
• A database need to:

• Give correct answers to queries

• Expressability

• What queries are supported

• Maintainability

• Needs to support transactions:

• Atomicity Consistency Isolation and Durability

• User friendly

Relational Databases
• Transactions

• Atomicity

• A transaction can be rolled back

• Consistency

• A transaction transforms a database from one valid state to
another valid state

• Isolation

• A transaction is invisible to others until it commits

• Durability

• Once committed, the results are permanent and survive system
and media failures

Relational Databases
"Future users of large data banks must be protected from having to know how the data is organized in the machine
(the internal representation). ... Activities of users at terminals and most application programs should remain unaffected
when the internal representation of data is changed and even when some aspects of the external representation are
changed. Changes in data representation will often be needed as a result of changes in query, update, and report traffic
and natural growth in the types of stored information.
"Existing noninferential, formatted data systems provide users with tree-structured files or slightly more general network
models of the data. In Section 1, inadequacies of these models are discussed. A model based on n-ary relations, a normal
form for data base relations, and the concept of a universal data sublanguage are introduced. In Section 2, certain
operations on relations (other than logical inference) are discussed and applied to the problems of redundancy and
consistency in the user's model."

Codd: ”A Relational Model of Data for Large Shared Data Banks”, CACM 1970

https://dl.acm.org/citation.cfm?id=362685

Relational Databases
• Data is stored as tuples.

• A tuple is an array of values.

• Each coordinate is an attribute

• Customary to present tuples as rows in a matrix

title year length genre

Gone with the wind 1939 231 drama

Star wars 1977 124 SciFi

Wayne’s World 1992 95 comedy

Relational Databases
• Columns are called attributes

• Name and the set of attributes are called the scheme

• Movies(title, year, length, genre)

• Entries are called tuples

• Strict relational model requires that all attributes are
atomic: an elementary type

• Movies(title:str, year:int, length:int,
genre:str)

Relational Databases
• Relational databases change over time through inserts

and deletions

• The state of a database at one time is called the current
instance

Relational Databases
• Keys:

• Relations are not ordered

• To allow fast access, need indices

• Information represented by the data also needs to be
coherent

• A change in the information should result in a single
update to a tuple

• Otherwise, programming errors are likely to render
the information incoherent

Relational Databases
• Notation of keys supports both

• Artificial keys: an auto-generated ID that characterizes
each tuple uniquely

• A or a combination of attributes that are unique to the
tuple (for all eternity)

• Movie database example:

• Title is not sufficient, there were two King Kong
movies

• Underline keys in a scheme

• Movies(title, year, length, genre)

Relational Databases
• Group Exercise

• Create schemes for a Movie Database with relations

• Movies, MovieStar, MovieExec

• that allows us to answer such question as :

• Which studios did John Wayne work for

• Who was responsible for hiring John Wayne

• What was the first year in which John Wayne stared?

SQL Statements
• SQL Data Definition Sublanguage

• Stored relations —> tables

• Relations defined by computation —> views

• Relations defined during computation —> temporary
tables

• These are accessible through nested SQL query
statements, but are not explicitly defined

SQL Statements
• SQL implementations differ in the exact types such as for

data and time, but their expressibility is about the same

• Defining a table:

CREATE TABLE Movies(

title CHAR(100),
year INT,
genre CHAR(10),
studioName CHAR(30),
producerC# INT

)

SQL Statements
• Drop a table

 DROP TABLE movies;

• Add an attribute

 ALTER TABLE moviestar ADD phone CHAR(16)

• Drop an attribute

 ALTER TABLE moviestar DROP birthdate

SQL Statements
• Can use default values

 …

 gender CHAR(1) DEFAULT ‘?”’,

 birthday DATA DEFAULT DATE ‘0000-00-00’

 …

SQL Statements
• Can declare an attribute to be unique or a primary key

• Primary keys are used for indexing tuples

• Lookup using primary keys is then particularly fast

CREATE TABLE moviestar (
 name CHAR(30) PRIMARY KEY,
 address VARCHAR(255),
 gender CHAR(1) DEFAULT ‘?’,
 birthdate DATE
);

SQL Statements
• Alternative declaration

CREATE TABLE moviestar (
 name CHAR(30),
 address VARCHAR(255),
 gender CHAR(1) DEFAULT ‘?’,
 birthdate DATE,
 PRIMARY KEY (name)
);

SQL Statements
• Composite keys

CREATE TABLE movies(
 title CHAR(100),
 year INT,
 length INT,
 genre CHAR(10),
 studioname CHAR(30),
 producerC# INT,
 PRIMARY KEY (title, year)
);

Relational Databases
• Query languages

• Less powerful than general purpose HL programming
languages

• Is the number of tuples in a table even or odd?

• Easier to program and the ability to produce highly
optimized code for execution

• Typically an interface to relational algebra

Relational Databases
• Set operations on set of tuples

• ,

• To apply, tuples need to have the same attributes in the
same order

R ∪ S R ∩ S R − S

Relational Databases
• Selection

Relation Sells:
bar beer price
Joe’s Bud 2.50
Joe’s Miller 2.75
Sue’s Bud 2.50
Sue’s Miller 3.00

JoeMenu := σbar=“Joe’s”(Sells):
bar beer price
Joe’s Bud 2.50
Joe’s Miller 2.75

Relational Databases
• Projection

Relation Sells:
bar beer price
Joe’s Bud 2.50
Joe’s Miller 2.75
Sue’s Bud 2.50
Sue’s Miller 3.00

Prices := πbeer,price(Sells):
beer price
Bud 2.50
Miller 2.75
Miller 3.00

Relational Databases
• Extended projection

• Can define a new attribute: C := A+B

• Can duplicate attributes

R = (A B)
1 2
3 4

πA+B->C,A,A (R) = C A1 A2
3 1 1
7 3 3

Relational Databases
• Product

• Pair each tuple t1 of R1 with each tuple t2 of R2

• Concatenate to obtain tuple t1t2

• Schema of result is the attributes of R1 and then R2 in
order

• If an attribute appears in the schemes of R1 and R2,
need to disambigue

Relational Databases
• Example

R1(A, B)
1 2
3 4

R2(B, C)
5 6
7 8
9 10

R3(A, R1.B, R2.B, C)
1 2 5 6
1 2 7 8
1 2 9 10
3 4 5 6
3 4 7 8
3 4 9 10

Relational Databases
• Theta Join

• Take the product

• Then apply to the result

• Traditionally, only operators allowed were of the form

• where

R3 = R1 ⋈c R2
R1 × R2

σc

A θ B

θ ∈ { = , < ≤ , > , ≥ }

Relational Databases
Sells(bar, beer, price) Bars(name, addr)

Joe’s Bud 2.50 Joe’s Maple St.
Joe’s Miller 2.75 Sue’s River Rd.
Sue’s Bud 2.50
Sue’s Coors 3.00

BarInfo := Sells ⋈Sells.bar = Bars.name Bars

BarInfo(bar, beer, price, name, addr)
Joe’s Bud 2.50 Joe’s Maple St.
Joe’s Miller 2.75 Joe’s Maple St.
Sue’s Bud 2.50 Sue’s River Rd.
Sue’s Coors 3.00 Sue’s River Rd.

Relational Databases
• Natural join

• Subset where c equates all attributes of the same name

• R3 = R1 ⋈ R2

Relational Databases
Sells(bar, beer, price) Bars(name, addr)

Joe’s Bud 2.50 Joe’s Maple St.
Joe’s Miller 2.75 Sue’s River Rd.
Sue’s Bud 2.50
Sue’s Coors 3.00

BarInfo := Sells ⋈Sells.bar = Bars.name Bars

BarInfo(bar, beer, price, name, addr)
Joe’s Bud 2.50 Joe’s Maple St.
Joe’s Miller 2.75 Joe’s Maple St.
Sue’s Bud 2.50 Sue’s River Rd.
Sue’s Coors 3.00 Sue’s River Rd.

Relational Databases
• Renaming

• -operator gives a new scheme to a relation

• makes R1 a relation with attributes
A1, … An and the same tuples as in R2

ρ
R1 = ρR1(A1,…An)(R2)

Relational Databases
Bars(name, addr)

Joe’s Maple St.
Sue’s River Rd.

R(bar, addr)
Joe’s Maple St.
Sue’s River Rd.

R(bar, addr) := Bars

Relational Databases
• Using the relations Bars(name, addr) and Sells(bar, beer,

price), find the names of all the bars that are either on
Maple St. or sell Bud for less than $3.

Relational Databases

Bars Sells

σaddr = “Maple St.” σprice<3 AND beer=“Bud”

πname

ρR(name)

πbar

∪

Relational Databases
• Using Sells(bar, beer, price), find the bars that sell two

different beers at the same price.

• Strategy: by renaming, define a copy of Sells, called
S(bar, beer1, price). The natural join of Sells and S
consists of quadruples (bar, beer, beer1, price) such that
the bar sells both beers at this price.

Relational Databases

Sells Sells

ρS(bar, beer1, price)

⋈

πbar

σbeer != beer1

Relational Database Design
• Not all set of schemes for information are created equally

• Good design makes it difficult to create a database
with contradictory information

Relational Database Design
• Functional dependencies

• A1, A2, … , An —> B1, B2, … , Bm

• If two tuples have the same values for A1, A2, … An

• Then they have the same value for B1

• Then they have the same value for B2

• …

• Then they have the same value for Bm

Relational Database Design
• Movie database

• Movies1(title, year, length, genre,
studioName, starName)

• title year —> length, genre, studioName,
starName is True

• title year —> starName is False

Relational Database Design
• Formal definition of a key

• R(A1, A2, … , Am)

• B1, B2, …, Bn is a superkey if

• B1 B2 … Bn -> A1 A2 … Am

• B1, B2, …, Bn is a key if no true subset is a
superkey

Relational Database Design
Anomalies

• Redundancy Anomaly: information is repeated in various
tuples

• Movies1(title, year, length, genre,
studioName, starName)

• The length of star wars is repeated information

Relational Database Design
• Update Anomaly

• If information in one tuple is changed, it might need to
be changed in many other tuples

• Discover that star wars is really 129 minutes long.

• Change it in one tuple but not in another

• Information is no longer coherent

Relational Database Design
• Deletion anomaly

• If a set of values becomes empty, we might loose other
information as well

• Remove Vivian Leigh as star from Gone with the Wind:

• No more information on Gone with the Wind survives
if she was the only star

Relational Database Design
• Dealing with these anomalies

• Decompose relations

• Movies1(title, year, length, genre,
studioName, starName)

• becomes

• movies2(title, year, length, genre,
studioName)

• movies3(title, year, starName)

Relational Database Design
• Notice that we cannot prevent repeating information that

a certain movie was made in a certain year

• Only title, year is a key

• We need to repeat this information in order to
disambiguate movies with the same title

Relational Database Design
• Boyce - Codd Normal Form

• Simple condition to prevent all anomalies

• In any functional dependency

• A1 A2 … An —> B1 … Bm

• A1 A2 … An is a superkey

Relational Database Design
• Example:

• MovieExec(title, year, studioName, president, presAddr)

• has dependencies

• title year —> studioName

• studioName —> president

• president —> presAddr

• But only title year is a key

Relational Database Design
• Need to decompose FD

• (title, year, studioName), (studioName,
president, presAddr)

• Second table still not in Boyce-Codd NF

• Decompose into

• (title, year, studioName), (studioName,
president), (president, presAddr)

•

Relational Database Design
• Decomposition yields

• Elimination of anomalies

• Recoverability of information: original data can be
recovered

• Preservation of Functional Dependencies

• This is unfortunately not always given

