
Algorithms Spring 2020 Final 
Once you download this final, you cannot communicate with anyone about this final or about 
algorithms until the deadline. Be aware that students can be given an extension under 
extenuating circumstances, so please be circumspect in what you share afterwards. 


Solve 5 of the following 6 problems. Submit your solution in the D2L dropbox before 
Thursday 23:59 pm.  The only acceptable format is a pdf.   

Problem 1: 

For the following program, determine a recurrence for the number  of asterisks printed on 
input .  Then solve this recurrence.


def aster(n): 
   if n == 0: 
      print('*', endl="") 
      return 
   for i in range(n*n):   #n-squared 
      aster(n-1) 

an
n



Problem 2: 

A subset  of vertices in an undirected graph is called hegemonic, if any node is either in   or 
is the neighbor of a vertex in  For example, in the following graph, the yellow vertices are a 
hegemonic set. 


But with the same graph, we can have another hegemonic set (in blue). This shows that 
hegemonic sets are not only not uniquely determined but also can have different numbers of 
elements. 


The problem of finding a hegemon of minimum size is NP-complete. Show that the following 
greedy algorithm does not always find a hegemon of minimum size, but always finds a 
hegemon.


def greedy_hegemon(G):

   If G is empty, return the empty set.

   Find the vertex  with most neighbors and put it into the hegemon set. 

   Remove that vertex and all its neighbors from the set of vertices forming a subgraph .

   Return 


Determine the run-time of greedy_hegemon(G) using  notation.
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Problem 3: 

T w o b i t - s t r i n g s  a n d 
 p roduce an i n te r l eav ing 

 if the bits of  are taken from  
and , but appear in the same order as they appear 
there.  For example, i f  and 

, then  is an interleaving (see below), but  
is not, even though it has the same letters.  The latter is true because we can have most three 
leading ones in an interleaving before we need to get a zero. 


Let  be a Boolean function that is true if  is an interleaving of 
 and .  For example,  and  is True if and only 

if  or .  Find a recursive formula that expresses  in 
terms of  and/or  and explain why this gives a dynamic programming 
solution to determining interleaving that works in time .


X = (x1, x2, x3, …xn)
Y = (y1, y2, y3, …ym)
Z = (z1, z2, …zn+m) Z X

Y
X = (1,0,0,0,1)

Y = (1,1,0,1) Z = (111000011) Z′ = (111100001)

d(i, j ) (z1, z2, …zi+j)
(x1, x2, …, xi) (y1, y2, …, yj) d(0,0) = False d(1,1)

z1 = x1 ∧ z2 = y1 z1 = y1 ∧ z2 = x1 d(i, j )
d(i − 1, j ) d(i, j − 1)

O(nm)

1 10 00 1 101

1 10 001 101



Problem 4: 

Execute the connected component algorithm on the following graph. Whenever you have a 
choice to make, use the alphabetic ordering of the nodes.  E.g., when you select a node to 
visit, you first start with node A.  When you visit A, you have two nodes that you can visit, so 
you choose G over H according to the alphabet. 


(For your solution, show every step of the algorithm.)
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Problem 5: 

Find the 3-colorable graph representing the 3-SAT problem


	 


and color it with three colors such that no two neighboring nodes share the same color.  Your 
graph should have three vertices for B, T, and F, three times two vertices for the pairs of literals, 
and two times 6 vertices for the clauses.


(¬a ∨ b ∨ c) ∧ (¬a ∨ ¬b ∨ ¬c)



Problem 6: 

Assume you are given an ordered array of  numbers in .  Develop an  
algorithm to determine how many one-s there are in the array. 


n {0,1} O(log n)
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