
Algorithms Spring 2020 Final
Once you download this final, you cannot communicate with anyone about this final or about
algorithms until the deadline. Be aware that students can be given an extension under
extenuating circumstances, so please be circumspect in what you share afterwards.

Solve 5 of the following 6 problems. Submit your solution in the D2L dropbox before
Thursday 23:59 pm. The only acceptable format is a pdf.

Problem 1:

For the following program, determine a recurrence for the number of asterisks printed on
input . Then solve this recurrence.

def aster(n):
 if n == 0:
 print('*', endl="")
 return
 for i in range(n*n): #n-squared
 aster(n-1)

an
n

Problem 2:

A subset of vertices in an undirected graph is called hegemonic, if any node is either in or
is the neighbor of a vertex in For example, in the following graph, the yellow vertices are a
hegemonic set.

But with the same graph, we can have another hegemonic set (in blue). This shows that
hegemonic sets are not only not uniquely determined but also can have different numbers of
elements.

The problem of finding a hegemon of minimum size is NP-complete. Show that the following
greedy algorithm does not always find a hegemon of minimum size, but always finds a
hegemon.

def greedy_hegemon(G):

 If G is empty, return the empty set.

 Find the vertex with most neighbors and put it into the hegemon set.

 Remove that vertex and all its neighbors from the set of vertices forming a subgraph .

 Return

Determine the run-time of greedy_hegemon(G) using notation.

S S
S .

v
G′

{v} ∪ greedy_hegemon(G′)

Θ

Problem 3:

T w o b i t - s t r i n g s a n d
 p roduce an i n te r l eav ing

 if the bits of are taken from
and , but appear in the same order as they appear
there. For example, i f and

, then is an interleaving (see below), but
is not, even though it has the same letters. The latter is true because we can have most three
leading ones in an interleaving before we need to get a zero.

Let be a Boolean function that is true if is an interleaving of
 and . For example, and is True if and only

if or . Find a recursive formula that expresses in
terms of and/or and explain why this gives a dynamic programming
solution to determining interleaving that works in time .

X = (x1, x2, x3, …xn)
Y = (y1, y2, y3, …ym)
Z = (z1, z2, …zn+m) Z X

Y
X = (1,0,0,0,1)

Y = (1,1,0,1) Z = (111000011) Z′ = (111100001)

d(i, j) (z1, z2, …zi+j)
(x1, x2, …, xi) (y1, y2, …, yj) d(0,0) = False d(1,1)

z1 = x1 ∧ z2 = y1 z1 = y1 ∧ z2 = x1 d(i, j)
d(i − 1, j) d(i, j − 1)

O(nm)

1 10 00 1 101

1 10 001 101

Problem 4:

Execute the connected component algorithm on the following graph. Whenever you have a
choice to make, use the alphabetic ordering of the nodes. E.g., when you select a node to
visit, you first start with node A. When you visit A, you have two nodes that you can visit, so
you choose G over H according to the alphabet.

(For your solution, show every step of the algorithm.)

A

B

C

D

E

J

G
H

I

F

KL

M

N

O

Problem 5:

Find the 3-colorable graph representing the 3-SAT problem

	

and color it with three colors such that no two neighboring nodes share the same color. Your
graph should have three vertices for B, T, and F, three times two vertices for the pairs of literals,
and two times 6 vertices for the clauses.

(¬a ∨ b ∨ c) ∧ (¬a ∨ ¬b ∨ ¬c)

Problem 6:

Assume you are given an ordered array of numbers in . Develop an
algorithm to determine how many one-s there are in the array.

n {0,1} O(log n)

	Problem 1:
	Problem 2:
	Problem 3:
	Problem 4:
	Problem 5:
	Problem 6:

