
Dynamic and Greedy
Programming

Practice Problems

Practice Problem 1
• Longest palindromic subsquence

• You are given a string such as 'marquetteuniversity'

• You have to find the largest substring that is a
palindrome

• (reads backwards the same as reads forward)

• E.g. can we do better than marquetteuniversity

• Yes, there are 'r's we can use

• marquetteuniversity: 'ruetteur'

Practice Problem 1
• The simplest approach is to:

• Generate all substrings

• Check whether they are palindromes

• Select the palindrome of longest length

• Question 1: What is the complexity of this simple
algorithm

Practice Problem 1
• Question 2: If we have a string, how can we reduce it to the

same problem involving strings of lesser length

• How about 'ACCTATGAGCA'?

• We look at 'ACCTATGAGCA'?

• How about 'ACCTATGAGAC'?

• We look at 'ACCTATGAGAC' and 'ACCTATGAGAC'?

• Question 3: How can we make this into an efficient algorithm

• Subproblem: A quick way to calculate the length of the
palindromic substring

Solution 1
• There are substrings of a string of length

• Any solution that generates that many strings (or more
than a fixed proportion of them) has exponential run-time

2n n

Solution 1
• Let be the length of the longest palindromic substring of a

string .

• If then the two end letters cannot be both
part of a maximum palindrome and we get

•

• Recall that in Python is the slice obtained by
removing the first letter of and the slice
obtained by removing the last letter of

• Because the longest palindrome needs to be in one of
these two substrings

l(s)
s

s[0] ≠ s[−1]

l(s) = max(l(s[1 :]), l(s[: − 1]))

s[1 :]
s s[: − 1]

s

Solution 1
• But what about a case like

• 'ACCTATGAGCA'

• Can we say

• 'ACCTATGAGCA'

• This cannot be simply asserted

• It could be the one of ACCTATGAGCA and
ACCTATGAGCA could contain a larger palindrome

l(′ ACCTATGAGCA′) = l(′ CCTATGAGC′) + 2

Solution 1
• If we cannot exclude the possibility, then the recursion

formula would be

• if l(s) = max{l(s[1 :], l(s : − 1), l(s[1, − 1]) + 2)
s[0] = = s[−1]

Solution 1
• Happily, this is not necessary

• Assume that

• Write x for that letter and with a substring

s[0] = = s[−1]

s = xrx r

rx x

Solution 1
• Assume that the best palindrome is

• Where could it be:

• If it is in the middle

• We can get a better one by including x

p

rx x

Solution 1
• Assume that the best palindrome is

• Where could it be:

• It must therefore include on of the x

• We can assume (without loss of generality) that it is the
left x

• But then we can just get the x from the rightmost x

• A different best palindromic substring, but of equal length

p

x xx

x xx

Solution 1
• This gives us our recursion for the length of the largest

palindromic substring
def lps(astring):
 if len(astring) == 1:
 return 1
 if len(astring) == 0:
 return 0
 if astring[0] == astring[-1]:
 return lps(astring[1:-1])+2
 else:
 return max(lps(astring[1:]), lps(astring[:-1]))

Solution 1
• Should we memoize this?

• For longer strings, yes.

• Run time:

• In the worst case, we look at two strings of size ,
so we are looking at strings.

n − 1
2n

Solution 1

• Finding the best palindrome

• Return both the length and the best palindrome so far
def lps(astring):
 #print(astring)
 if len(astring) == 1:
 return 1, astring
 if len(astring) == 0:
 return 0, ""
 if astring[0] == astring[-1]:
 length, substring = lps(astring[1:-1])
 return length+2, astring[0]+substring+astring[-1]
 else:
 length1, substring1 = lps(astring[1:])
 length2, substring2 = lps(astring[:-1])
 if length1 < length2:
 return length2, substring2
 else:
 return length1, substring1

