Dynamic and Greedy Programming

Practice Problems

Practice Problem 1

- Longest palindromic subsquence
 - You are given a string such as 'marquetteuniversity'
 - You have to find the largest substring that is a palindrome
 - (reads backwards the same as reads forward)
 - E.g. can we do better than marquetteuniversity
 - Yes, there are 'r's we can use
 - marquetteuniversity: 'ruetteur'

Practice Problem 1

- The simplest approach is to:
 - Generate all substrings
 - Check whether they are palindromes
 - Select the palindrome of longest length
- Question 1: What is the complexity of this simple algorithm

Practice Problem 1

- Question 2: If we have a string, how can we reduce it to the same problem involving strings of lesser length
 - How about 'ACCTATGAGCA'?
 - We look at 'ACCTATGAGCA'?
 - How about 'ACCTATGAGAC'?
 - We look at 'ACCTATGAGAC' and 'ACCTATGAGAC'?
- Question 3: How can we make this into an efficient algorithm
 - Subproblem: A quick way to calculate the length of the palindromic substring

- There are 2^n substrings of a string of length n
- Any solution that generates that many strings (or more than a fixed proportion of them) has exponential run-time

- Let *l*(*s*) be the length of the longest palindromic substring of a string *s*.
 - If $s[0] \neq s[-1]$ then the two end letters cannot be both part of a maximum palindrome and we get
 - $l(s) = \max(l(s[1:]), l(s[:-1]))$
 - Recall that in Python s[1 :] is the slice obtained by removing the first letter of s and s[: -1] the slice obtained by removing the last letter of s
 - Because the longest palindrome needs to be in one of these two substrings

- But what about a case like
 - 'ACCTATGAGCA'
 - Can we say l(ACCTATGAGCA') = l(CCTATGAGC') + 2
 - 'ACCTATGAGCA'
 - This cannot be simply asserted
 - It could be the one of ACCTATGAGCA and ACCTATGAGCA could contain a larger palindrome

- If we cannot exclude the possibility, then the recursion formula would be
 - $l(s) = \max\{l(s[1:], l(s:-1), l(s[1, -1]) + 2) \text{ if } s[0] = s[-1]$

- Happily, this is not necessary
 - Assume that s[0] = = s[-1]
 - Write x for that letter and s = xrx with a substring r

x	r	x	
---	---	---	--

- Assume that the best palindrome is *p*
 - Where could it be:
 - If it is in the middle

• We can get a better one by including x

- Assume that the best palindrome is *p*
 - Where could it be:
 - It must therefore include on of the x
 - We can assume (without loss of generality) that it is the left x

• But then we can just get the x from the rightmost x

• A different best palindromic substring, but of equal length

• This gives us our recursion for the length of the largest palindromic substring

```
def lps(astring):
if len(astring) == 1:
    return 1
if len(astring) == 0:
    return 0
if astring[0] == astring[-1]:
    return lps(astring[1:-1])+2
else:
    return max(lps(astring[1:]), lps(astring[:-1]))
```

- Should we memoize this?
 - For longer strings, yes.
- Run time:
 - In the worst case, we look at two strings of size *n* − 1, so we are looking at 2ⁿ strings.

- Finding the best palindrome
 - Return both the length and the best palindrome so far

```
def lps(astring):
#print(astring)
if len(astring) == 1:
    return 1, astring
if len(astring) == 0:
    return 0, ""
if astring[0] == astring[-1]:
    length, substring = lps(astring[1:-1])
    return length+2, astring[0]+substring+astring[-1]
else:
    length1, substring1 = lps(astring[1:])
    length2, substring2 = lps(astring[:-1])
    if length1 < length2:
        return length2, substring2
    else:
        return length1, substring1
```