
Homework 3 
Due February 10, 2020


(1) Calculate the numbers of memory fetches and stores (in the accumulator cum RAM model) 
of the following code snippets.  An input / output counts as a memory fetch / store. 


Take this code snippet:


  print(a*2+1).   

We need to fetch a, 2, and 1 and we need to store the result in the output register, which gives 
us 4 operations. 

Take another code snippet:

n = 0 
  for i in range(1…10):  #includes 1 and 10 
   n += i 
  print(n) 

We need to translate this code into an assembly style code. First, we break up the instructions.

n = 0 
  i = 0 
   loop:   if i > 10: 
   break 
  i = i+1 
   n = n + i 
           goto loop 
  print(n) 

Now we can generate accumulator based pseudo-assembly code:

ACC = 0 
  n <— ACC 
  ACC <— i 
loop:  CMP_GT ACC   #compare greater than 
  IF FLAG SET:  #comparison yielded TRUE 
   JUMP EXIT 
  ACC +=  1   #not a memory fetch 
           ACC —> i 
  ACC <— n 
  ACC += i   #but this one is 
  ACC —> n 
  ACC <— i 
  JUMP LOOP 
EXIT:  ACC <— N 
  N —> OUTPUT 



We now can count the fetch operations.  Outside the loop, we have two fetch/store operations 
before and two after. Within the loop, we have five such operations. Therefore, we have  
fetch / store operations. 

Use this process to calculate the number of fetch/store operations to calculate the sum 
of an array of n element.  The array elements are stored contiguous in memory at 
incrementing memory locations. The first array element is stored at a location , the 
second at , etc.

You will have to make many assumptions.  It is imperative that you make your reasoning very 
clear. 

(2)  Use limits in order to compare the asymptotic growth of the following pair of functions (given 
as expressions in the variable n).  Show all your work.  Use o, , and  to express the 
relationship.  You can check your derivations using Mathematica, Maple, or Matlab.

(1) ,   

(2) ,   

(3) ,   

(4) , 

(5) , 

(6) ,   

   

  

5n + 4

m + 0
m + 1

Θ Ω

log(n)2 n

n2 + 5
n + 4

n

en 3n

nn 2n

n2 2n

n log(n)2 n log(n2)


