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Hilbert’s Program
• Grundlagenkrise in Mathematics (~ 1900):

• How to be sure that Mathematics is true

• Attempts suffer from paradoxes

• Example Naïve Set Theory: Russel’s set of all sets that do not 

contain themselves as an element

• Answers to the Grundlagenkrise

• Intuitionism:

• Mathematics is a human activity, it does not discover universal truth


• Logicism:

• All mathematics derives from logic


• Formalism:

• Mathematics is a game with certain rules that conform to our 

thinking processes



Hilbert’s Program
• A formulation of all mathematics

• Completeness: 

• Proof that all true mathematical statements can be proved in the 

formalism.

• Consistency: 

• Proof that no contradiction can be obtained in the formalism of 

mathematics.

• Conservation: 

• Proof that any result about "real objects" obtained using reasoning 

about "ideal objects" (such as uncountable sets) can be proved 
without using ideal objects.


• Decidability

• There is an algorithm for deciding the truth or falsity of any 

mathematical statement.



Hilbert’s Program
• Hilbert’s program:

• Find an algorithm that can decide the truth or falsity of 

an arbitrary statement in first-order predicate calculus 
applied to integers


• Gödel’s incompleteness result (1931)

• No such effective procedure can exist



Hilbert’s Program
• Formalization of “effective procedure” 

• Each procedure should be described finitely

• Each procedure should consist of discrete steps, each 

of which can be carried out mechanically


• Number of proposals

• λ-calculus

• Turing machines (in different versions)

• RAM machines (computers with infinite memory) 



Hilbert’s Program
• Church Turing Result:

• λ-calculus and Turing machines have the same 

computational power


• Church Hypothesis

• Turing machines are equivalent to our intuitive notion of 

a computer

• What is computable by a human is what is computable 

by a computer which is what is computable by a Turing 
machine



Turing
• Early career is as a Mathematical Logician


• Idea:  What is computable


• Proposes the Turing machine as a simple example of 
what a Mathematician can calculate (without the 
brilliance)


• I.e.: A very simple formal way to compute


• Idea: If something is possible in that simple system 
then a human Mathematician can do it as well



Turing
• Entscheidungsproblem: Can every true statement in first 

order logic (with quantifiers) be derived in first order logic


• Answers a dream of Gottfried Leibniz: Build a machine 
that could manipulate symbols in order to determine the 
truth values of mathematical statements.



Turing
• Made it plausible that a Mathematician is not more 

powerful than the Turing calculus


• Proved limitations on what a Turing calculus can achieve


• Post thought that Turing’s machine was too complicated 
and proposed a cleaner definition of the machine



Post-Turing Machine
• A Turing machine consists of

• An infinitely-long tape divided into squares that are 

initially blank (denoted by a symbol ‘b’)

• A read-write head that can read and write symbols 

• A control unit that consists of a state machine

• In a given state and when reading a given symbol:

• The machine goes to a new state

• The machine writes a new symbol

• The machine moves to the left or the right by one 

step.  



Post-Turing Machines
• Turing machine input

• A string on the tape, with all other symbols being 

blanks.


• Turing machine output

• Turing machines can make decisions:

• By writing them on the tape

• By entering an “accepting” or a “rejecting” state

• These possibilities are actually equivalent 

http://morphett.info/turing/turing.html



Post-Turing Machines
• Turing machine programs:

• A program consists of a set of transition rules:

• Current state, Current Symbol —> New State, New 

Symbol, Move


• Note: All Turing machine programs are finite



Post-Turing Machine
• Despite its simplicity, a Turing machine can imitate any 

computer (known today)



Post Turing Machine
• Turing machine programs


• consists of lines 


<curr. state> <curr. symb> <new symb> <dir> <new state>



Turing Machine Example
• Palindrome detector


• Accepts if the input — binary string surrounded by blanks — is a 
palindrome


• Algorithm:


• Find the left-most symbol, erase it, and remember it


• Go to the right until we are over a blank


• Move one to the left and check the symbol, erasing it


• Continue until 


• A discrepancy is discovered


• Until no more symbols are left over



Turing Machine Example
• go to the left until we find a blank


• now we are at the beginning of the word


• we erase the symbol, but remember the symbol (through the 
state) and go right

state0, 0, 0, left, state0
state0, 1, 1, left, state0

state0, b, b, right, state1

state1, 0, b, right, state_seen_zero
state1, 1, b, right, state_seen_one



Turing Machine Example
• we go right until we hit a blank, then we go back one step 

to compare
state_seen_zero, 0, 0, right, state_seen_zero 
state_seen_zero, 1, 1, right, state_seen_zero 
state_seen_zero, b, b, left, state0end 

state_seen_one, 0, 0, right, state_seen_one 
state_seen_one, 1, 1, right, state_seen_one 
state_seen_one, b, b, left, state1end 



Turing Machine Example
• We are now over the last symbol


• If the symbol does not match, we go to the non-
acceptance state


• If the symbol matches, we start moving left until we hit 
the blank that we created

state0end, 1, b, stop, not_accepted
state0end, 0, b, left, state_go_left

state1end, 0, b, stop, not_accepted
state1end, 1, b, left, state_go_left



Turing Machine Example
• We just go left until we hit the blank, at which point we go 

right and start over

state_go_left, 0, 0, left, state_go_left 
state_go_left, 1, 1, left, state_go_left 
state_go_left, b, b, right, state1 



Turing Machine Example
• When do we stop:


• If there are only blanks on the tape


• We are then in state1 and we encounter another 
blank 

state1, b, b, stop, accept



Turing Machine Example
• You can run this example at


• http://morphett.info/turing/



The Universal Turing 
Machine

• We can extend the model of the Turing machine


• E.g. we can have Turing machines with two tapes


• But we do not get anything more, 


• Because we can emulate a Turing machine with two 
tapes with a Turing machine with one tape


• How?


• Even cells are for tape 0, odd cells are for tape 1, 
and a more complicated state machine



The Universal Turing 
Machine

• We can emulate a Turing machine with n tapes with a 
standard one


• This becomes a model for a RAM machine with n 
memory cells


• RAM machine stores program in some dedicated 
memory locations



The Universal Turing 
Machine

• We can also build a universal Turing machine 


• Initially:  a Turing machine program plus input, 
separated by blanks


• Machine then simulates the execution of a Turing 
machine


• Machine halts when the simulated Turing machine halts



The Universal Turing 
Machine

• A single machine that can emulate all possible Turing 
machines!!



Diagonalization Proofs
• Mathematical technique developed by Cantor


• Trick is applying something to itself


• Example:  We can count all rational numbers


• Use the following scheme 



Diagonalization Proofs
1/1 1/2 1/3 1/4 1/5 1/6

2/1 2/2 2/3 2/4 2/5 2/6

3/1 3/2 3/3 3/4 3/5 3/6

4/1 4/2 4/3 4/4 4/5 4/6

5/1 5/2 5/3 5/4 5/5 5/6

6/1 6/2 6/3 6/4 6/5 6/6



Diagonalization Proofs
• Cantor:


• The real numbers in [0,1] are not countable


• Assume that they are:


• Let                                      be an enumeration of real 
numbers


• Write the numbers as binary numbers, leave out the 
leading dot

s1, s2, s3, s4, s5, …



Diagonalization Proofs

s0,0 s0,1 s0,2 s0,3 s0,4 s0,5 … 

s1,0 s1,1 s1,2 s1,3 s1,4 s1,5 … 

s2,0 s2,1 s2,2 s2,3 s2,4 s2,5 … 

s3,0 s3,1 s3,2 s3,3 s3,4 s3,5 … 



Diagonalization Proofs
• Now define a new number defined by the enumeration 

itself


• The ith binary digit of t is the opposite of the ith digit of 
the ith number

ti = 1 − si,i



Diagonalization Proofs
• If this would be an enumeration of all real numbers in 

[0,1], then t would appear in the enumeration


• Suppose it is the jth element


• Look at the jth digit of t


• So, this is not possible


• Ergo: we cannot enumerate the numbers in [0,1]

sj,j = tj = 1 − sj,j



Diagonalization Proofs
• This is a similar argument to Russell’s paradox:


• X = The set of all set that do not have themselves as an 
element. 


• Is X ∈ X



Diagonalization Proofs
• The universal Turing machine allows us to do the same 

type of self-application to show impossibilities



Impossibility 
• Can everything (whatever that means) be computed


• Halting Problem: Will a program stop executing


• Answer:  There is no algorithm that can decide whether a 
given program will stop executing


• Though most of the time, we can decide so easily



Proof: The Halting Problem 
is not-computable

• Assume that we have a program that can decide the 
halting problem

• Input:  

• A program — basically a long string

• An input


• Output: A decision — the program will halt on that 
input or the program will not halt on that input



Proof: The Halting Problem 
is not-computable

• Assume that there is such a program


• def halting(program, input): 
#something really complicated 
if b: 
     return True 
else: 

return False



Proof: The Halting Problem 
is not-computable

• Now, we create a new program

def z(program): 
if halting(program, program): 
      while True: 
             x = 0 
else: 
       print(“I am done”)



Proof: The Halting Problem 
is not-computable

• What happens if we calculate z(z)

• Perfectly legit, since z is a program

• Will z halt or not?

• If z halts on z, 

• Then halting(z,z) is True.

• Then we execute “while True”

• Therefore z does not halt

def z(program): 
if halting(program, program): 
      while True: 
             x = 0 
else: 
       print(“I am done”)



Proof: The Halting Problem 
is not-computable

• What happens if we calculate z(z)

• Perfectly legit, since z is a program

• Will z halt or not?

• If z does not halts on z, 

• Then halting(z,z) is False.

• Therefore we print  “I am done”

• Therefore z does halt

def z(program): 
if halting(program, program): 
      while True: 
             x = 0 
else: 
       print(“I am done”)



Proof: The Halting Problem 
is not-computable

• This is a contradiction

• Therefore, the function halting  cannot exist.

• Therefore, the halting problem cannot be solved by 

computation


