
Computability
Algorithms 2020

Hilbert’s Program
• Grundlagenkrise in Mathematics (~ 1900):

• How to be sure that Mathematics is true

• Attempts suffer from paradoxes

• Example Naïve Set Theory: Russel’s set of all sets that do not

contain themselves as an element

• Answers to the Grundlagenkrise

• Intuitionism:

• Mathematics is a human activity, it does not discover universal truth

• Logicism:

• All mathematics derives from logic

• Formalism:

• Mathematics is a game with certain rules that conform to our

thinking processes

Hilbert’s Program
• A formulation of all mathematics

• Completeness:

• Proof that all true mathematical statements can be proved in the

formalism.

• Consistency:

• Proof that no contradiction can be obtained in the formalism of

mathematics.

• Conservation:

• Proof that any result about "real objects" obtained using reasoning

about "ideal objects" (such as uncountable sets) can be proved
without using ideal objects.

• Decidability

• There is an algorithm for deciding the truth or falsity of any

mathematical statement.

Hilbert’s Program
• Hilbert’s program:

• Find an algorithm that can decide the truth or falsity of

an arbitrary statement in first-order predicate calculus
applied to integers

• Gödel’s incompleteness result (1931)

• No such effective procedure can exist

Hilbert’s Program
• Formalization of “effective procedure”

• Each procedure should be described finitely

• Each procedure should consist of discrete steps, each

of which can be carried out mechanically

• Number of proposals

• λ-calculus

• Turing machines (in different versions)

• RAM machines (computers with infinite memory)

Hilbert’s Program
• Church Turing Result:

• λ-calculus and Turing machines have the same

computational power

• Church Hypothesis

• Turing machines are equivalent to our intuitive notion of

a computer

• What is computable by a human is what is computable

by a computer which is what is computable by a Turing
machine

Turing
• Early career is as a Mathematical Logician

• Idea: What is computable

• Proposes the Turing machine as a simple example of
what a Mathematician can calculate (without the
brilliance)

• I.e.: A very simple formal way to compute

• Idea: If something is possible in that simple system
then a human Mathematician can do it as well

Turing
• Entscheidungsproblem: Can every true statement in first

order logic (with quantifiers) be derived in first order logic

• Answers a dream of Gottfried Leibniz: Build a machine
that could manipulate symbols in order to determine the
truth values of mathematical statements.

Turing
• Made it plausible that a Mathematician is not more

powerful than the Turing calculus

• Proved limitations on what a Turing calculus can achieve

• Post thought that Turing’s machine was too complicated
and proposed a cleaner definition of the machine

Post-Turing Machine
• A Turing machine consists of

• An infinitely-long tape divided into squares that are

initially blank (denoted by a symbol ‘b’)

• A read-write head that can read and write symbols

• A control unit that consists of a state machine

• In a given state and when reading a given symbol:

• The machine goes to a new state

• The machine writes a new symbol

• The machine moves to the left or the right by one

step.

Post-Turing Machines
• Turing machine input

• A string on the tape, with all other symbols being

blanks.

• Turing machine output

• Turing machines can make decisions:

• By writing them on the tape

• By entering an “accepting” or a “rejecting” state

• These possibilities are actually equivalent

http://morphett.info/turing/turing.html

Post-Turing Machines
• Turing machine programs:

• A program consists of a set of transition rules:

• Current state, Current Symbol —> New State, New

Symbol, Move

• Note: All Turing machine programs are finite

Post-Turing Machine
• Despite its simplicity, a Turing machine can imitate any

computer (known today)

Post Turing Machine
• Turing machine programs

• consists of lines

<curr. state> <curr. symb> <new symb> <dir> <new state>

Turing Machine Example
• Palindrome detector

• Accepts if the input — binary string surrounded by blanks — is a
palindrome

• Algorithm:

• Find the left-most symbol, erase it, and remember it

• Go to the right until we are over a blank

• Move one to the left and check the symbol, erasing it

• Continue until

• A discrepancy is discovered

• Until no more symbols are left over

Turing Machine Example
• go to the left until we find a blank

• now we are at the beginning of the word

• we erase the symbol, but remember the symbol (through the
state) and go right

state0, 0, 0, left, state0
state0, 1, 1, left, state0

state0, b, b, right, state1

state1, 0, b, right, state_seen_zero
state1, 1, b, right, state_seen_one

Turing Machine Example
• we go right until we hit a blank, then we go back one step

to compare
state_seen_zero, 0, 0, right, state_seen_zero
state_seen_zero, 1, 1, right, state_seen_zero
state_seen_zero, b, b, left, state0end

state_seen_one, 0, 0, right, state_seen_one
state_seen_one, 1, 1, right, state_seen_one
state_seen_one, b, b, left, state1end

Turing Machine Example
• We are now over the last symbol

• If the symbol does not match, we go to the non-
acceptance state

• If the symbol matches, we start moving left until we hit
the blank that we created

state0end, 1, b, stop, not_accepted
state0end, 0, b, left, state_go_left

state1end, 0, b, stop, not_accepted
state1end, 1, b, left, state_go_left

Turing Machine Example
• We just go left until we hit the blank, at which point we go

right and start over

state_go_left, 0, 0, left, state_go_left
state_go_left, 1, 1, left, state_go_left
state_go_left, b, b, right, state1

Turing Machine Example
• When do we stop:

• If there are only blanks on the tape

• We are then in state1 and we encounter another
blank

state1, b, b, stop, accept

Turing Machine Example
• You can run this example at

• http://morphett.info/turing/

The Universal Turing
Machine

• We can extend the model of the Turing machine

• E.g. we can have Turing machines with two tapes

• But we do not get anything more,

• Because we can emulate a Turing machine with two
tapes with a Turing machine with one tape

• How?

• Even cells are for tape 0, odd cells are for tape 1,
and a more complicated state machine

The Universal Turing
Machine

• We can emulate a Turing machine with n tapes with a
standard one

• This becomes a model for a RAM machine with n
memory cells

• RAM machine stores program in some dedicated
memory locations

The Universal Turing
Machine

• We can also build a universal Turing machine

• Initially: a Turing machine program plus input,
separated by blanks

• Machine then simulates the execution of a Turing
machine

• Machine halts when the simulated Turing machine halts

The Universal Turing
Machine

• A single machine that can emulate all possible Turing
machines!!

Diagonalization Proofs
• Mathematical technique developed by Cantor

• Trick is applying something to itself

• Example: We can count all rational numbers

• Use the following scheme

Diagonalization Proofs
1/1 1/2 1/3 1/4 1/5 1/6

2/1 2/2 2/3 2/4 2/5 2/6

3/1 3/2 3/3 3/4 3/5 3/6

4/1 4/2 4/3 4/4 4/5 4/6

5/1 5/2 5/3 5/4 5/5 5/6

6/1 6/2 6/3 6/4 6/5 6/6

Diagonalization Proofs
• Cantor:

• The real numbers in [0,1] are not countable

• Assume that they are:

• Let be an enumeration of real
numbers

• Write the numbers as binary numbers, leave out the
leading dot

s1, s2, s3, s4, s5, …

Diagonalization Proofs

s0,0 s0,1 s0,2 s0,3 s0,4 s0,5 …

s1,0 s1,1 s1,2 s1,3 s1,4 s1,5 …

s2,0 s2,1 s2,2 s2,3 s2,4 s2,5 …

s3,0 s3,1 s3,2 s3,3 s3,4 s3,5 …

Diagonalization Proofs
• Now define a new number defined by the enumeration

itself

• The ith binary digit of t is the opposite of the ith digit of
the ith number

ti = 1 − si,i

Diagonalization Proofs
• If this would be an enumeration of all real numbers in

[0,1], then t would appear in the enumeration

• Suppose it is the jth element

• Look at the jth digit of t

• So, this is not possible

• Ergo: we cannot enumerate the numbers in [0,1]

sj,j = tj = 1 − sj,j

Diagonalization Proofs
• This is a similar argument to Russell’s paradox:

• X = The set of all set that do not have themselves as an
element.

• Is X ∈ X

Diagonalization Proofs
• The universal Turing machine allows us to do the same

type of self-application to show impossibilities

Impossibility
• Can everything (whatever that means) be computed

• Halting Problem: Will a program stop executing

• Answer: There is no algorithm that can decide whether a
given program will stop executing

• Though most of the time, we can decide so easily

Proof: The Halting Problem
is not-computable

• Assume that we have a program that can decide the
halting problem

• Input:

• A program — basically a long string

• An input

• Output: A decision — the program will halt on that
input or the program will not halt on that input

Proof: The Halting Problem
is not-computable

• Assume that there is such a program

• def halting(program, input):
#something really complicated
if b:
 return True
else:

return False

Proof: The Halting Problem
is not-computable

• Now, we create a new program

def z(program):
if halting(program, program):
 while True:
 x = 0
else:
 print(“I am done”)

Proof: The Halting Problem
is not-computable

• What happens if we calculate z(z)

• Perfectly legit, since z is a program

• Will z halt or not?

• If z halts on z,

• Then halting(z,z) is True.

• Then we execute “while True”

• Therefore z does not halt

def z(program):
if halting(program, program):
 while True:
 x = 0
else:
 print(“I am done”)

Proof: The Halting Problem
is not-computable

• What happens if we calculate z(z)

• Perfectly legit, since z is a program

• Will z halt or not?

• If z does not halts on z,

• Then halting(z,z) is False.

• Therefore we print “I am done”

• Therefore z does halt

def z(program):
if halting(program, program):
 while True:
 x = 0
else:
 print(“I am done”)

Proof: The Halting Problem
is not-computable

• This is a contradiction

• Therefore, the function halting cannot exist.

• Therefore, the halting problem cannot be solved by

computation

