
Solutions — Sample Midterm 1 
Problem 1: 

The transition table is given below. The beginning state is , the accepting states are the 
ones containing , that means .


Problem 2: 
:  Compare with . Since  for any , we 

are in Case 1 of the MT and therefore .


:  Compare with .  Since  for any , 
we are still in Case 1 of the MT and therefore .


Problem 3: 
(a) The recurrence is not in the form for the MT.

(b) Compare  with . Clearly, they are equal and we are in Case 2 of 

the MT. Therefore .


(c) Compare  with .  Because of , we are not in Case 2 

of the MT (if you use the book, wikipedia has a more extensive version of the MT). Because 
for any , we have

. 

This implies  for any .  We are therefore not in Case 3 of the MT. 


Problem 4: 
Let  be the difference between hi and lo. The algorithm does some things, then has a loop 
with  iterations, during which it calls the function with an input of .  Therefore the 
recurrence is .  Obviously, we can get rid of the loop and get a much better 
algorithm. 


{A}
A {A}, {A, C}, {A, B}, {A, B, C}

State 0 1

{A} {B} {B,C}

{B} {A} {A,C}

{B,C} {A,B} {A,B,C}

{A,C} {B} {B,C}

{A,B} {A,B} {A,B,C}

{A,B,C} {A,B} {A,B,C}

T (n) = 4T (n /2) + c nlog2(4) = n2 c = o(n2−ϵ) ϵ ∈ (0,2)
T (n) = (n2)

T (n) = 3T (n /2) + c nlog2(3) c = o(nlog2(3)−ϵ ϵ ∈ (0, log2(3))
T (n) = nlog2 3
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n
n n − 1

T (n) = nT (n − 1)



Problem 5: 

We use an induction argument. Before the first run of the loop, the loop invariant has 
something to say about an empty array and is therefore vacuously true. This establishes the 
base case. 


Assume that the loop invariant is true before iteration . We want to show that the invariant is 
true after iteration .  Assume that there is a violation of the order in .  If the offending 
elements belonged to , then they must have been out of order before, because the 
loop potentially moves them one to the right, but does not change their order. So, this cannot 
have been the case. Therefore, one of the offenders is .  What about the other one?  There 
are two cases: the other offender is smaller than  or the other offender is larger than .


If the other offender is smaller than , but now is located to the right of , then if was 
looked at in the loop, in which case we would have gotten out of the while loop before 
changing its position.  Therefore, it is not to the right of  and this case cannot have 
happened.


If the other offender is larger than , then we did not move   by it. For this to have 
happened, we needed to have stopped at an element  of  because it was 
smaller than .  But this cannot have happened either:  was smaller than ,  
was located to the right of the offender before the loop, and the other offender is larger than 

, which implies that the array  was out of order.

j
j A[0..j ]

A[0..j − 1]

A[ j ]
A[ j ] A[ j ]

A[ j ] A[ j ]

A[ j ]

A[ j ] A[ j ]
A[k] A[0..j − 1]

A[ j ] A[k] A[ j ] A[k]

A[ j ] A[0..j − 1]
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