
Final Solutions
Problem 1:
Since , the split pointer is 4 and the level is 3. Since 30%8 = 6, which is , the
bucket address for a key hash of 30 is 6. Similarly, 33 Bucket 1, 36 Bucket 4, 39
Bucket 7, 42 Bucket 10, 45 Bucket 5, and 48 Bucket 0.

Problem 2:

Problem 3:

Problem 4:
We make this into a graph-coloring problem. The stations are the vertices of the graph. The
conflicts are represented as edges of the graph. A channel assignment is a color assigned to a
node. Two nodes joined by an edge cannot be in the same color. This is the independent set
problem, which reduces to 3-SAT.

12 = 23 + 4 ≥ 4
→ → →

→ → →

1 2 3

4 6 7

8 9

source

sink

1/5

3/5

1/1

1/5

1/62/2

3/4

0/40/5

0/6 0/4

0/40/2

5

1/1

1/1

1 2 3

4 6 7

8 95

4
1

1
4

13
2 5 4

0/3

3

4

21

6

2 4 15

3

1
1

1 2 3

4 5 6

7 8 9

10 11 12

13 14

3,

1,2

4,

5,10

6,9

7,8

11,

12,

Problem 5:
In any parenthesization, there is a final multiplication, which writes the product as

	 	 	

Here, can range from 1 to as neither the left nor the right sub-product can be empty.
After deciding where to put the final multiplications, we have to parenthesize the left and the
right product. We can read of for the number of parenthesization of matrices as

	 	 	 .

We also need to put in an initial value, which is

To implement this efficiently, we need to use memoization. In Python, this is done with the
@functools.cache decorator:

Problem 6:
We are doing at most constant work for each element in the array. Thus .

Problem 7:
The recursion is given by , which according to the MT is .

(M1 ⋅ … ⋅ Mk) ⋅ (Mk+1 ⋅ … ⋅ Mn)
k n − 1

n

Π(n) =
n−1

∑
k=1

Π(k) ⋅ Π(n − k)

Π(1) = 1.

O(len(array))

T (n) = 2T (n /2) + O(1) Θ(n)

def max_sub(array):
 if len(array) == 1:
 return array[0], array[0], array[0], array[0]
 half_index = len(array)//2
 left, right = array[:half_index], array[half_index:]
 if not left:
 return max_sub(right)
 if not right:
 return max_sub(left)
 lbest, ltotal, lleft, lright = max_sub(left)
 rbest, rtotal, rleft, rright = max_sub(right)
 bbest = max([lright+rleft, ltotal+rtotal, lbest, rbest])
 btotal = ltotal+rtotal
 bleft = max(lleft, ltotal+rleft)
 bright = max(rright, lright+rtotal)
 return bbest, btotal, bleft, bright

import functools

@functools.cache
def par(n):
 if n == 1:
 return 1
 return sum([par(k)*par(n-k) for k in range(1, n)])

Problem 8:
Counterexamples are only formed if the maximum weight
edge is a bridge, i.e. if removing it would result into a
disconnected graph. For example:

Problem 9:
@functools.cache
def coins(amount):
 if amount < 0:
 return False
 if amount == 0:
 return True
 return coins(amount-13) or coins(amount-19) or coins(amount-23)

Problem 10:
For any index , .
Therefore, the array is still sorted. We can therefore use binary
search for 0. This takes time.

def even(array, low, up):
 if low == up:
 if array[low] == 2*low:
 return low
 else:
 return -1
 if low == up-1:
 if array[low] == 2*low:
 return low
 elif array[up] == 2*up:
 return up
 else:
 return -1
 half = (low+up)//2
 if array[half] == 2*half:
 return half
 elif array[half] > 2*half:
 return even(array, low , half)
 else:
 return even(array, half, up)

i (ai+1 − 2 ⋅ (i + 1)) − (ai − 2 ⋅ i)) = ai+1 − ai + 2i − 2i − 2 ≥ 2 − 2 = 0
[ai − 2i for i ∈ {0,1,…, i − 1}]

O(log(n))

5

3 2

4

4

1234

2 3

2

	Problem 1:
	Problem 2:
	Problem 3:
	Problem 4:
	Problem 5:
	Problem 6:
	Problem 7:
	Problem 8:
	Problem 9:
	Problem 10:

