Extra Credit Homework

Up to 100 points, that can be translated into either

20 points for missing midterm and final score points

100 points for homework and programming assignment points

No collaboration, No use of the web! Violators will have to face final judgement (or me if I find out).

An *emil* in a directed graph is a node *s* such that $\forall v \in V - \{s\}$: $(v, s) \in E$ and $\exists v \in V$: $(s, v) \in E$. This means that all other nodes have an edge towards *s* but no nodes has an edge towards *s*. An example for a digraph with universal sink is given below:

Assume that a matrix is given by an **adjacency matrix** with a coefficient $m_{i,j} = 0$ is there is no edge from Node *i* to Node *j*, and $m_{i,j} = 1$ if there is an edge from Node *i* to Node *j*. The adjacency matrix of the above graph is given as

Give a $\Theta(|V|)$ time algorithm to determine whether a graph, given by an adjacency matrix, has an emil. Explain why your algorithm works.