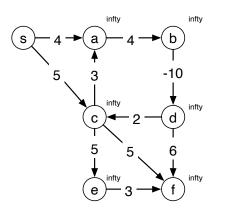
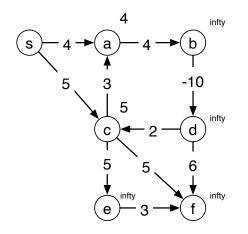
Homework 10 Solutions

Problem 1:



Priority Queue:

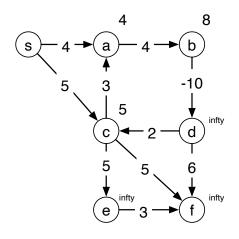
 $[(a, \infty), (b, \infty), (c, \infty), (d, \infty), (e, \infty), (f, \infty)]$



Priority Queue:

[(a, 4), (c, 5), (b, ∞), (d, ∞), (e, ∞), (f, ∞)]

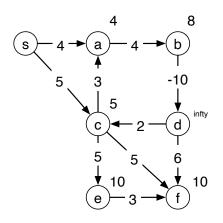
Processing a:



Priority Queue:

 $[(c, 5), (b, 8), (d, \infty), (e, \infty), (f, \infty)]$

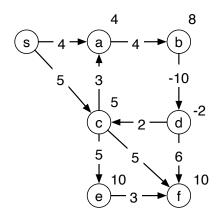
Processing c:



Priority Queue:

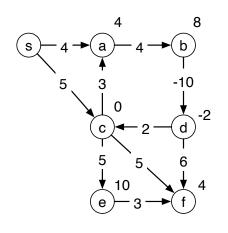
[(b, 8) (e, 10), (f, 10), (d, ∞)]

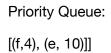
Processing *b*:



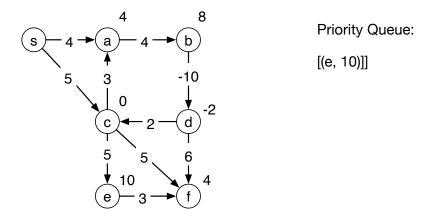
Priority Queue: [(d,-2), (e, 10), (f, 10)]

Processing d:





Processing *f*: no distance changes, because there are no edges leaving *f*



The algorithm now stops because we have reached the last vertex.

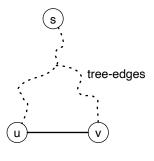
As this example shows, Dijskstra will not discover negative edge cycles.

Problem 2:

The Euclidean distance is the shortest path length between two points. Any route from any node to the goal node is a route in the plane.

Problem 3:

(a) If (u, v) is a back-edge, then at the time we consider it, u is in the DFS-tree and v is in the DFS-tree. Since trees are connected, there is another path in the graph from u to v. Therefore, (u, v) cannot be a connector. See diagram on the right.



(b) If a tree edge (u, v) is a connector, then removing it from the graph results in two different components. Therefore, there cannot be any edge from the descendants of v to an ancestor of u.

Conversely, if there is no edge from a descendant of v to an ancestor of u, then removing (u, v) breaks the graph into two different connected components.