Homework 10 Solutions
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The algorithm now stops because we have reached the last vertex.

As this example shows, Dijskstra will not discover negative edge cycles.

Problem 2:

The Euclidean distance is the shortest path length between two points. Any route from any
node to the goal node is a route in the plane.

Problem 3:
(a) If (u, v) is a back-edge, then at the time we consider it, u is in the |
DFS-tree and v is in the DFS-tree. Since trees are connected, there is

, A tree-edges
another path in the graph from u to v. Therefore, (u, v) cannot be a K 9

connector. See diagram on the right.

(b) If a tree edge (u, v) is a connector, then removing it from the graph C C
results in two different components. Therefore, there cannot be any

edge from the descendants of v to an ancestor of u.

Conversely, if there is no edge from a descendant of v to an ancestor of u, then removing
(u,v) breaks the graph into two different connected components.
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