Homework 11 Solutions

Problem 1:

Step 1: We initialize the flow to be 0.

RSOUI’CG

0/5 0/5 0/

s

0/3 03 02 0/3

oof
N

The residual has a path from source to sink: source

. ﬁ?w@
V.

\/

smk

Step 2: The network flow augmented by the residual gives

}RSOU rce

2/5 0/5 0/5

e

2/3 03 02 073

/

0/3 >

2/2 0/9
\C)/Sink
The residual graph is on the left. Since we are using BFS, the first path encountered is source-

b-e-sink shown on the right. It gives a flow of 2.

%M VAN
x\ % %@/
va V.

We augment and obtain

}&SOUI’CG

2/5 2/5 0/5

4y

2/3 0/3 22 0/3

o

2/2 2/9

V..

The residual graph is on the left. A BFS path is as short as possible, so we have no choice.

%41}5559 ﬁ%?ﬂ
Yo o
A I

Incorporation into the flow graph gives a flow of 7

ROU rce

2/5 2/5 3/5

0/6 @— 0/6

2/3 0/3 2/2 3/3

ol

2/2 5/9
\C{sink

We now calculate the residual on the left and find a path with BFS. The yellow stickers give the
distance from the source. As a result, we have an augmented flow of 1 on the right.

MG /Ne /ﬂze

ER R 60
N

sink 4 nk sink

The resulting flow network is

g{o urce

3/5 2/5 3/5

0/6 *ﬁ% 0/6

0/3 22 313

/

1/3->

sink

We calculate the residual, then do BFS with markers for the distance from the source, and
finally obtain an augmenting path with a flow of 2.

Py
Lo gt ey

e M

sink 4k 4 k

The resulting flow network is

A{OU rce

3/5 4/5 3/5

0/6 0/6

3/3 23 272 3/3

/

3/3

2/2 8/9

\

sink

The residual is

%Source

BFS gives the following distance from the source.

/%so\urce

2 314 23

This shows that there is no longer a path in the residual from source to sink. We can put all
reachable nodes into one set and the other ones into another set to obtain a cut. This gives a

maximum flow of 10, realized in our flow.
}&source

3/5 4/5 3/5

source

M

2 3 1 2\3\‘ l
6 /4 6 @—0/6-@—0/6—@

3 12 o 3 /2/3 2/2 /3/3
<+ 3 3/3
1 8 2/2 8/9

_ \/,
sink Q sink

Problem 2:

Let the array be a. Create a hash table for all the sums (e.g. using LH). The key is a[i] + a[]
nn +
and the value is the pair of indices (i, j) with i < j. This will take 3 insertion, which we

can assume to each take constant time. Then given ¢, we go through the array once more. For
each index k, we look for ¢ — a[k] in the hash table. If we find it, then ¢ — a[k] = a[i] + a[J]
for value (i, j). Thus, ¢ = ali] + a[j] + a[k]. The bill is O(n?) for creating the hash table and
O(n) for finding a triple sum, for a total of O (n?).

Problem 3:

Create a graph with vertices being the threads. Create an edge t — s if thread s waits for

thread 7. Then use DFS for a topological sort. If this works, then the threads are ordered in a
manner where they can proceed. If this does not work, then there is a cycle. Progress is only
possible if we break this cycle by randomly terminating a thread and thereby removing it from

n
the graph. Since there are at most 5 edges, the algorithm runs in time O (n?).

	Problem 1:
	Problem 2:
	Problem 3:

