Homework 11 Solutions

Problem 1:

Step 1: We initialize the flow to be 0.
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The residual has a path from source to sink: source
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Step 2: The network flow augmented by the residual gives
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The residual graph is on the left. Since we are using BFS, the first path encountered is source-

b-e-sink shown on the right. It gives a flow of 2.
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We augment and obtain
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The residual graph is on the left. A BFS path is as short as possible, so we have no choice.
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Incorporation into the flow graph gives a flow of 7
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We now calculate the residual on the left and find a path with BFS. The yellow stickers give the
distance from the source. As a result, we have an augmented flow of 1 on the right.
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The resulting flow network is
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We calculate the residual, then do BFS with markers for the distance from the source, and
finally obtain an augmenting path with a flow of 2.
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The resulting flow network is
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BFS gives the following distance from the source.
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This shows that there is no longer a path in the residual from source to sink. We can put all
reachable nodes into one set and the other ones into another set to obtain a cut. This gives a

maximum flow of 10, realized in our flow.
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Problem 2:

Let the array be a. Create a hash table for all the sums (e.g. using LH). The key is a[i] + a[ ]
nn +
and the value is the pair of indices (i, j) with i < j. This will take 3 insertion, which we

can assume to each take constant time. Then given ¢, we go through the array once more. For
each index k, we look for ¢ — a[k] in the hash table. If we find it, then ¢ — a[k] = a[i] + a[J]
for value (i, j). Thus, ¢ = ali] + a[j] + a[k]. The bill is O(n?) for creating the hash table and
O(n) for finding a triple sum, for a total of O (n?).

Problem 3:

Create a graph with vertices being the threads. Create an edge t — s if thread s waits for

thread 7. Then use DFS for a topological sort. If this works, then the threads are ordered in a
manner where they can proceed. If this does not work, then there is a cycle. Progress is only
possible if we break this cycle by randomly terminating a thread and thereby removing it from

n
the graph. Since there are at most 5 edges, the algorithm runs in time O (n?).
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