Homework 4 Solutions:

Problem 1:

For each of the following recurrences, decide whether the Master Theorem (as in the **book**, not as in Wikipedia) can be applied and if yes, then apply it. Show your work. Identify clearly the parameters *a* and *b* and define the function f(n). State whether the MT applies. Define the power of *n* with which you compare f(n).

(a)
$$T(n) = 3T(n/2) + n$$

Using the MT and its notation, we have a = 3, b = 2, f(n) = n. Thus, $\log_b(a) = \log_2(3) \approx 1.585$. With $\epsilon = .5$, $f(n) = n = O(n^{\log_2(3) - \epsilon})$ and therefore $T(n) = \Theta(n^{\log_2(3)})$.

(b)
$$T(n) = 3T(n/4) + n^2$$

Using the MT and its notation, we have a = 3, b = 4, $f(n) = n^2$. Thus, $\log_b(a) = \log_4(3) \approx 0.792$. With $\epsilon = 0.1$, we have $f(n) = n^2 = \Omega(n^{\log_b(a) + \epsilon})$. We need to evaluate the extra condition: $af(n/b) = 3(n/4)^2 = \frac{3n^2}{16} \le \frac{1}{2} \cdot n^2 = \frac{1}{2} \cdot f(n)$, thus $T(n) = \Theta(n^2)$.

(c)
$$T(n) = 4T(n/2) + \log(n)\sqrt{n}$$

We have a = 4 and b = 2 so that because of $\log_4(2) = 1/2$, we have to compare \sqrt{n} with $\sqrt{n} \cdot \log(n)$. As $\lim_{n \to \infty} \frac{\sqrt{n} \log(n)}{\sqrt{n}} = \lim_{n \to \infty} \log(n) = \infty$, $\sqrt{n} \log(n) = \Omega(\sqrt{n})$ and so we can only be in Case 3. However, $\lim_{n \to \infty} \frac{n^{1/2} \log(n)}{n^{1/2+\epsilon}} = \lim_{n \to \infty} \frac{\log(n)}{n^{\epsilon}} = {}^{\text{LH}} \lim_{n \to \infty} \frac{1}{n^{1+\epsilon}} = 0$, for any

 $n \to \infty$ $n^{1/2+\epsilon}$ $n \to \infty$ n^{ϵ} $n \to \infty$ $n^{1+\epsilon}$ $\epsilon > 0, \sqrt{n} \log n \notin \Omega(n^{1/2+\epsilon})$, so that we are in between Cases 2 and 3. Therefore, the MT does not apply.

(d)
$$T(n) = \frac{2}{3}T(n/2) + \frac{1}{3}n$$

We have a = 2/3. Thus, MT does not apply.

(e) $T(n) = 5T(n/7) + n\cos(n\pi)$

We have a = 5 and b = 7. However, $n \cos(n\pi)$ is not a positive function, so the MT does not apply.

(f)
$$T(n) = 4T(\frac{n}{16}) + 2^n$$

We have a = 4 and b = 16. Thus, $\log_b(a) = \log_{16} 4 = \frac{1}{2}$. Obviously, $2^n \in \Omega(n^{1/2+1/2})$. The regularity condition becomes $4(f(n/16)) \le cf(n)$. But the left side evaluates to $4 \cdot 2^{\frac{n}{16}} = 2^{2+\frac{n}{16}}$ which is smaller than 2^n whenever n > 2. Thus, $T(n) = \Theta(2^n)$.

(g)
$$T(n) = 2T(\frac{n}{2}) + 2n\log(n)$$

We have a = 2 and b = 2. As $\log_2(2) = 1$, we compare n with $2n \log(n)$. Because $\lim_{n \to \infty} \frac{2n \log(n)}{n} = \infty$, we have $2n \log(n) \notin \Theta(n)$. However, for $0 < \epsilon < 1$:

 $\lim_{n \to \infty} \frac{2n \log(n)}{n^{1+\epsilon}} = \lim_{n \to \infty} \frac{2 \log(n)}{n^{\epsilon}} = {}^{\mathsf{LH}} \lim_{n \to \infty} \frac{2}{\epsilon n^{\epsilon-1} \cdot n} = \lim_{n \to \infty} \frac{2}{\epsilon n^{\epsilon}} = 0, \text{ so that}$ $2n \log(n) \notin \Omega(n^{1+\epsilon}). \text{ Thus, we are neither in case 2 nor 3 and the MT does not apply.}$

Problem 2:

Show that T(n) = T(n-1) + n + 1 implies that $T(n) \le Cn^2$ as long as $C \ge 1$ and $C \ge T(1)$.

We show this by induction. The induction base is already given. For the induction step, we calculate

 $T(n + 1) = T(n) + (n + 1) \le Cn^2 + n + 1$ Now $C(n + 1)^2 = Cn^2 + 2Cn + C > Cn^2 + 2n + 1$, which gives the desired inequality.

Problem 3:

Given the following Python program, prove the loop invariant $acc = \frac{i(i+1)}{2}$.

The loop invariant is true before the while loop starts. Assume it is true before an iteration with value *j*. Thus acc = $\frac{j(j+1)}{2}$. After the while loop, acc = $\frac{j(j+1)}{2} + j + 1$ and the new value of *j* is *j* + 1. According to the loop invariant, the value of acc should be $\frac{(j+1)(j+2)}{2}$. We

calculate $\frac{(j+1)(j+2)}{2} = \frac{j^2+3j+2}{2} = \frac{(j^2+j)+2(j+1)}{2} = \frac{j^2+j}{2} + (j+1)$, which is indeed the new value of acc.

Problem 4:

Given the following C-program, show that the loop invariant $y = 2^{i} - 1$ is true. Deduce the value of y after the function has run.

At the beginning, y=0, i=0, and $2^i - 1 = 1 - 1 = 0$, so that the loop invariant is true. Before the execution of the loop with a given value of *i*, we have by assumption $y = 2^i - 1$. During the execution of the loop, *y* is incremented by 2^i . The new value of *y* is $2^i - 1 + 2^i = 2^{i+1} - 1$ Then *i* is also incremented. Therefore, the loop invariant holds.