Homework 4 Solutions:

Problem 1:

For each of the following recurrences, decide whether the Master Theorem (as in the **book**, not as in Wikipedia) can be applied and if yes, then apply it. Show your work. Identify clearly the parameters a and b and define the function $f(n)$. State whether the MT applies. Define the power of n with which you compare $f(n)$.

(a)
$$
T(n) = 3T(n/2) + n
$$

Using the MT and its notation, we have $a = 3$, $b = 2$, $f(n) = n$. Thus, $\log_b(a) = \log_2(3)$ \approx 1.585. With $\epsilon = .5$, $f(n) = n = O(n^{\log_2(3)-\epsilon})$ and therefore $T(n) = \Theta(n^{\log_2(3)})$.

(b)
$$
T(n) = 3T(n/4) + n^2
$$

Using the MT and its notation, we have $a = 3$, $b = 4$, $f(n) = n^2$. Thus, $log_b(a) = log_4(3)$ ≈ 0.792 . With $\epsilon = 0.1$, we have $f(n) = n^2 = \Omega(n^{\log_b(a) + \epsilon})$. We need to evaluate the extra condition: $af(n/b) = 3(n/4)^2 = \frac{3n^2}{16} \le \frac{1}{2} \cdot n^2 = \frac{1}{2} \cdot f(n)$, thus $T(n) = \Theta(n^2)$. $\frac{1}{16} \leq$ $\frac{1}{2} \cdot n^2 = \frac{1}{2} \cdot f(n)$, thus $T(n) = \Theta(n^2)$

(c)
$$
T(n) = 4T(n/2) + \log(n)\sqrt{n}
$$

We have $a = 4$ and $b = 2$ so that because of $\log_4(2) = 1/2$, we have to compare \sqrt{n} with

 $n \cdot \log(n)$. As $\lim_{n \to \infty} \frac{1}{n}$ = $\lim_{n \to \infty} \log(n) = \infty$, $\sqrt{n} \log(n) = \Omega(\sqrt{n})$ and so we can *n*→∞ *n* log(*n*) $\frac{\sum x_i}{n} = \lim_{n \to \infty}$ $log(n) = \infty$, $\sqrt{n} log(n) = \Omega(\sqrt{n})$

only be in Case 3. However, $\lim_{n \to \infty} \frac{1}{n}$ = $\lim_{n \to \infty} \frac{1}{n}$ = $\lim_{n \to \infty} \frac{1}{n}$ = 0, for any $\epsilon > 0, \sqrt{n \log n} \notin \Omega(n^{1/2+\epsilon}),$ so that we are in between Cases 2 and 3. Therefore, the MT does not apply. *n*→∞ *n*1/2 log(*n*) $\frac{\partial}{\partial n^{1/2+\epsilon}} = \lim_{n \to \infty}$ $\frac{\log(n)}{n^{\epsilon}} = LH \lim_{n \to \infty}$ 1 $\frac{1}{n^{1+\epsilon}} = 0$

(d)
$$
T(n) = \frac{2}{3}T(n/2) + \frac{1}{3}n
$$

We have $a=2/3$. Thus, MT does not apply.

(e) $T(n) = 5T(n/7) + n \cos(n \pi)$

We have $a = 5$ and $b = 7$. However, $n \cos(n \pi)$ is not a positive function, so the MT does not apply.

(f)
$$
T(n) = 4T(\frac{n}{16}) + 2^n
$$

We have $a = 4$ and $b = 16$. Thus, $\log_b(a) = \log_{16} 4 = \frac{1}{2}$. Obviously, $2^n \in \Omega(n^{1/2 + 1/2})$. The regularity condition becomes $4(f(n/16)) \leq cf(n)$. But the left side evaluates to $4 \cdot 2^{\frac{n}{16}} = 2^{2 + \frac{n}{16}}$ which is smaller than 2^n whenever $n > 2$. Thus, $T(n) = \Theta(2^n)$. $2ⁿ ∈ Ω(n^{1/2+1/2})$

(g)
$$
T(n) = 2T(\frac{n}{2}) + 2n \log(n)
$$

We have $a = 2$ and $b = 2$. As $log_2(2) = 1$, we compare n with $2n log(n)$. Because we have $2n\,\log(n)\notin\Theta(n).$ However, for $0<\epsilon< 1.$ $a = 2$ and $b = 2$. As $\log_2(2) = 1$, we compare *n* with $2n \log(n)$ lim *n*→∞ 2*n* log(*n*) $\frac{dP_{\mathcal{S}}(x)}{n} = \infty$, we have $2n \log(n) \notin \Theta(n)$. However, for $0 < \epsilon < 1$

, so that . Thus, we are neither in case 2 nor 3 and the MT does not apply. lim *n*→∞ 2*n* log(*n*) $\frac{n}{n^{1+\epsilon}} = \lim_{n \to \infty}$ $rac{2 \log(n)}{n^{\epsilon}} = LH \lim_{n \to \infty}$ 2 $\frac{a}{\epsilon n^{\epsilon-1} \cdot n} = \lim_{n \to \infty}$ 2 $\frac{\partial}{\partial \epsilon}$ = 0 2*n* log(*n*) ∉ Ω(*n*1+*^ϵ*)

Problem 2:

Show that $T(n) = T(n-1) + n + 1$ implies that $T(n) \le Cn^2$ as long as $C \ge 1$ and $C \geq T(1)$.

We show this by induction. The induction base is already given. For the induction step, we calculate

Now $C(n + 1)^2 = Cn^2 + 2Cn + C > Cn^2 + 2n + 1$, which gives the desired inequality. $T(n + 1) = T(n) + (n + 1) \le Cn^2 + n + 1$

Problem 3:

Given the following Python program, prove the loop invariant $acc = \frac{i(i + 1)}{2}$. 2

def litgau(n): i = 0 acc = 0 while i <= n: i += 1 acc += i return acc

The loop invariant is true before the while loop starts. Assume it is true before an iteration with value *j*. Thus acc = $\frac{j(j+1)}{2}$. After the while loop, acc = $\frac{j(j+1)}{2}$ + *j* + 1 and the new value of *j* is $j + 1$. According to the loop invariant, the value of acc should be $\frac{(j + 1)(j + 2)}{2}$. We 2 $\text{acc} = \frac{j(j+1)}{2}$ 2 $+j+1$ 2

calculate $\frac{(j+1)(j+2)}{2} = \frac{j^2+3j+2}{2} = \frac{(j^2+j)+2(j+1)}{2} = \frac{j^2+j}{2} + (j+1)$, which is indeed the new value of acc. 2 $+(j+1)$

Problem 4:

Given the following C-program, show that the loop invariant $y = 2^i - 1$ is true. Deduce the value of y after the function has run.

```
extern int i; 
y=0;for(i=0; i <= n; i ++) {
  y := pow(2, i);}
```
At the beginning, y=0, i=0, and $2^i-1=1-1=0$, so that the loop invariant is true. Before the execution of the loop with a given value of i , we have by assumption $y = 2^i - 1$. During the execution of the loop, y is incremented by 2^i . The new value of y is $2^i - 1 + 2^i = 2^{i+1} - 1$ Then i is also incremented. Therefore, the loop invariant holds.