Homework 7

due October 29, 2024

We want to layout a paragraph of text using a fixed-sized font. Each line can hold up to n characters. Words on a line are separated by exactly one blank, even if the word ends in a punctuation symbol. We define the *penalty* for a line to be b^2 , where b is the number of blank letters at the end. The penalty of a paragraph is the sum of the line penalties with exception of the last line. For example:

W	h	e	r	e	a	s	\square	r	e	(c	•	g	n	i	t	i	•	n	\bigcirc	0	f	\square	t	h	e	\bigcirc	\bigcirc	\bigcirc
i	n	h	e	r	e	n	t	\square	d	(i	g	n	i	t	У	\Box	a	n	d	\Box	\odot	f	\square	t	e	e	\bigcirc	\Box
e	(q	<u>u</u>	(a		\square	(a)	(n	(d	\square	(i	(n	(a)		(i	(e)	(n)	(a)	(b)	()	(e)	\Box	(r	(i	(g	(h)	(t)	(s)	\bigcirc
0	(f			(h	(e		(<u>h</u>	(u	(m)	(a)	(n	\bigcirc	(f)	a	(m	(i)		<u>(y</u>	\bigcirc	(i)	_s)		(t	(h	(e)	()	()	\bigcirc
f	0	(u)	(n	(d	(a)	(t	(i	\bigcirc	(n)	\square	\bigcirc	(f)	\bigcirc	(f)	(r	(e)	(e)	(d	(\circ)	(m)	_,)	\square	\square		\bigcirc	()	()	\bigcirc
(j	(u	<u>s</u>		(i)	(c	(e)		(a)	(n)	(d	\square	(p)	(e)	(a)	(c	(e)	\bigcirc	(i	(n)	\Box		(h	(e)	\square	\bigcirc	\bigcirc	\bigcirc	\bigcirc
(w)	(o	(r)	(1)	(d)	(,)				()			()	()			()	()		()	()	$\left(\right)$				()	()	()	

has a total penalty of $3^2 + 2^2 + 1^2 + 3^2 + 7^2 + 5^2$.

Describe in detail a dynamic programming approach to find the minimal-penalty layout of a paragraph. You are given the total number n of characters and the array of words. (If necessary, the words end in a punctuation mark.)