Algorithms

Thomas Schwarz, SJ

Regular Expressions and Finite State Systems

Transition Diagram

A man with a pet-wolf, a pet-goat,

and a cabbage wants to Ccross a river
in a boat that can only carry him and
one passenger. 1If the man leaves the
wolf and the goat alone, the wolf will
eat the goat. If the man leaves the
goat and the cabbage alone, then

the goat will eat the cabbage. How

can the man transport all three

possessions to the other side of the
river?

Transition Diagram

A man with a pet-wolf, a pee—y}’g?(,j_uéeaset (?f states
and a cabbage wants to cross &escriing possible

in a boat that can only carrycl@m‘zigyrgtions
one passenger. 1If the man leaves the

wolf and the goat alone, the wolf will
eat the goat. If the man leavgp:-cde
goat and the cabbage alone, then

the goat will eat the cabbage? @o%nd b are on the

can the man transport all threeoriginal side of the river

possessions to the other side of thg
i erD e”'Cc and d are on the other

side

e M — man, W — wolf,
G— goat, C — cabbage

Transition Diagram

e QOriginal State : MCGW

 Three possible transaction: e Mo
Men moves cabbage, goat, or

wolf to other side MC

e Results in three different MG
states, but not all of them are MCGW :
feasible because without the

man, the wolf eats the goat

MW
and the goat eats the cabbage.
)86: MW

Transition Diagram

* TJransition diagram
e States are circles
e Transitions move system from one state to the other
e Each movement is associated with a letter

* The letter is the pet that the man selects to transport
from one side of the river to the other

Transition Diagrams

Start ! ! ! !

A man with a pet-wolf, a pet- go.%, voe ©
and a cabbage wants to Ccross
in a boat that can only carr
one passenger. If the man leaves 1
wolf and the goat alone, the %Plfkylll
eat the goat. If the man leave
goat and the cabbage alone, the
the goat will eat the cabbagé€.
can the man transport all three

possessions to the other side of; the,

river? i i /

Finish

Finite Automata

* A finite automaton consists of
* A finite set of states
* A finite alphabet of inputs
* An initial state
* A set of final states
* A set of transitions

e Each transition is between two states and labelled with an
input. Only one transition with a certain label can leave a
state.

* A string is accepted by a finite automaton if it corresponds to a path
from the starting state to a final state

Finite Automata

 Formal definition
e A finite automaton is a quintuple (@, qo, @ f, 2, 9)
 where () is a finite “set of states”
e g9 € () isthe “start state”
e () F C () is the “set of final or accepting states”
e X is afinite set, the “alphabet”

e 0:(Q) x X — () isthe “transition function”

Finite Automata

e A transition moves from one state to another
e and consumes a single letter of input

e The new state is 0 of the old state and the letter

Finite Automata

A sequence of letters is processed by a series of
transitions.

 Assume the following automaton and the series
0001001011.

Finite Automata

Before processing anything of
0001001011

Start

Finite Automata

0001001011

Finite Automata

0001001011

Finite Automata

0001001011

Finite Automata

0001001011

0

Start —>
1 @ 1

0

Finite Automata

0001001011

0

Start —>
1 @ 1

0

Finite Automata

0001001011

0

Start —>
1 @ 1

0

Finite Automata

0001001011

Finite Automata

0001001011

Finite Automata

0001001011

0

Start —>
1 @ 1

0

Finite Automata

0001001011

In Class Exercise

e Process the words 'abbabababa’, 'aaaaa’, 'aabaabaab’

A~
/_\L
Start
5\ T
T b

def

for

In Class Exercise

process (word) :
current state = (
for letter 1n word:
current state = dicti[(current state, letter)]
return current state

word 1n |['abbabababa', 'aaaaa', 'aabaabaab']:
print (word, process (word))

In Class Exercise

abbabababa 3
aaaaa 1
aabaabaab 0

Finite Automata

* We can extend this to create a mapping
 Argument:
 Any state
e A string
* Image

* The state in which we end up processing the string
from the state

Finite Automata

e Let X" be the set of strings with letters in the alphabet X
e € |sthe empty string
e Extend & to 0 : Q) x X" — () by defining
Vg € Q:0(q€) =g
Ya € X Vq € Q) : S(q,a) = 6(q, a)
Yw e X" VaeXVgeqQ : S(Q,wa) — 5(5(q,w),a)

Finite Automata

e Example: Start_,R: :’
s

e First for the empty string and strings with one letter

C D

X Q| >~ >

C D
A B
D D

> O | ™

Finite Automata

e Example: Sta”“Ri :,
GS=G

5 |A B C D
* Then for strings of length 2 e |[A B C D
0 |[C D A B
1 |B A D D
0|A B C D
01| D C B A
10|D C B A
11A B C D

Finite Automata
Stat_,R: :’ 0(A,0011) = §(6(4,001),1)
— §(6(6(A,00),1),1)
— §(6(5(6(A,0),0),1),1)
a0 4,900 1)
()
(
(

Finite Automata

 Acceptance

* A string w is accepted by a finite automaton iff

A

5(q07 w) - Qf

e With other words, the string transitions from the
starting state to an accepting state

Finite Automata

e Programming Finite State Machines
e Easy if you can use goto and labels

 Unfortunately, too many language designers decided
that you should not be lead into temptation

e QOtherwise:
 Use an enumeration data structure for the states
e EXpress the transition function as a dictionary
e Orin Java, as an array

e Keep track of the current state

Finite Automata

This finite automaton accepts those .. _‘Ri1
strings that have an even number of

ones and an even number of zeroes

Lemma: The automaton is in a left é/ /@
state iff it has seen an even number

of ones

Lemma: The automaton is in a
upper state iff it has seen an even
number of zeroes

Proofs by induction on the length of
a string

Non-deterministic Finite
Automata

* Non-determinism can make it easier to design finite
automata

e The transition function can be multivalued

e |tis a function whose values are subsets of Q

§:0Q x X — 2¢

Non-deterministic Finite

0.1:

Automata

1
Start 0
1

@

1

\/
Seen

double
1

0,1

0,1

Seen
Seen 0 0 double
0

e Recognize all strings in {0, 1} with a
repeated O or a repeated 1

 Rule: A string is accepted if there is a
path labeled by the string from the
starting state to an accepting state

Non-deterministic Finite
Automata

Seen
0 Seen 0 0 double 0,1
0

1
Seen 1) 0 1
Start {Start, Seen 0} {Start, Seen 1}
Seen 0 {Seen double 0} %)
,
@
Seen
double
1

Seen 1 %) { Seen double 1 }
Seen double 0 | {Seen double 0} { Seen double 0}
Seen double 1 | {Seen double 1} {Seen double 1}

0,1

Non-deterministic Finite
Automata

* As before, extend transition function to all strings

Vg€ Q : d(g,¢) = {q}
Vae X VgeQ : 0(qg,a)=0d(q,a)

Yw € X" Va € X Vg € Q) : (qwa)
{peQFIreq@ : redlgw)and p e d(r,a)}

Non-deterministic Finite
Automata

Theorem: Let L be a set accepted by a non-deterministic

finite automaton. Then there exists a deterministic finite
automaton that also accepts L.

Non-deterministic Finite
Automata

e Proof sketch:

* Key idea: The states of the deterministic automaton are
the subsets of the non-deterministic automaton

 To calculate a transition from a subset X of states, form

) 6(g,a)

qe X

* Accepting states: Those subsets that contain an
accepting state

e Can show: A string is accepted in the NFA only if it is
accepted in the DFA

Non-deterministic Finite
Automata

Gt

0,1

A} tA,B} tA,D}
{A,B} {A,B,C} {A,D}
{A,D} {A,B} {A,D,E}

{ABC}I {ABC} {AC,D
{(ACD}I {ABC} {AC,D,E
{A,D,E} {A,B,E) {A,D,E}
{ABE} {ABCE} {ADE
{AB,CE} {AB,CE {AC,D,E
{ACD,E} {AB,CE {AC,D,E

Non-deterministic Finite
Automata

* Resulting DFA

In Class Exercise

e \We convert this NFA to a DFA

Start a 0

e Starting state is {a}. What are the states in the DFA
reachable from it?

In Class Exermse

* 0(1a},0) = 1by o(ia},1}) ={c,d]

e Same for {b} and {c, d}

In Class Exermse

* 0(10}1,0)=1c} o(ib},1} = {d,e]
* 0(1¢c,d},0) = 1d,e} o(ic,d}, 1} = (e}

e Now the same for the results

In Class Exermse

* 0({c},0) = {d} o({c},1} = {e}
e 0({d,e},0) = {e} o({d,e},1} = @

e 6({e},0)=2 6({e},1} =0

In Class Exermse

Start —>

* Thus, we only have states

wat, by, {ct, 1d}, {e}, {c,d}, {d, e}
e Final states are the ones that contain the final state of the
NFA.

Non-deterministic finite
automata with e-moves

e A further generalization of non-deterministic finite
automata are non-deterministic automata with € - moves

e Example: Stringsin {0, 1,2}" whose digits only

INncrease.
(O 1 2

Start

How does this

automaton accept
00002227

Non-deterministic finite
automata with e-moves

B

Start

e Transition function

€ 0

{B} {4}

{¢y 0
0 0

~—
O = SN
H_J

1
0
1B}
0

Q>

Non-deterministic finite
automata with e-moves

e \We can reduce non-deterministic finite automata with e-moves to non-
deterministic automata

e For any state and letter of the alphabet 2, calculate the states that can
be reached by using e-transitions and a single transition with the letter.

QT >

{A,B,C} {B,C} {C}

e Any state that can reach an accepting state by e-moves is accepting
) {B,.Cr {C}
OO0

0 1 2
B QQ @ 0 {c}

Start

In Class Exercise

e Convert the following into an NFA

Start

In Class Exercise

e For each state,

e calculate the epsilon-closure

e calculate the states reachable from the epsilon-closure
with a single non-epsilon transition

e apply the epsilon closure

In Class Exercise

e {a} S {a,c,d) 9 fa, ¢} S {a,c,d)

e {a) S {a.c.d) > (b,e,d) S {a,b,c,d)

In Class Exercise

o (b} S {a,b,c,d} > {a,c} S {a,c,d)
e (b)Y S {a.b.c,d) > (b,e,d) S {a,b,c.d)

In Class Exercise

gO e /go%
€ \L
Start d@

c (VS 350
o {c} S {c} = {d} S {d)

In Class Exercise
K ,/9?

o {d} S {d} > {c} S {c)
c (VS SPS

In Class Exercise

gO e /'%O%
€ \L
Start ﬂ@

0,1
0,1 0 1
0,1 &
o0
0,1
;
0,1

Regular Expressions

 Regular expressions define subsets of strings in an finite
alphabet 2

e Concatenation:
L+,Ly C > LiLo = {Qiy‘ilj S Ll,y S LQ}

e Powers:
LcC¥: LY := {¢}
L':=1L
L™t = L"L forn e N
e Kleene Closure
LCXY*: L= J L
1N

Regular Expressions

e Example: L ={01,10} c {0,1}"

L” = {e}

L' = {01,10}

L? = {0101,0110, 1001, 1010}

L° ={010101,010110,011001,011010, 100101, 100110, 101001, 101010}

Regular Expressions

 Regular expressions are defined by induction
e ¢ Is aregular expression and denotes the empty set
* ¢ Is aregular expression and denotes the set {6}

o If a € X" then @ is aregular expression and denotes
the set {a}

e If T, S areregular expressions for the sets R, S then

SO adre
r+s for RUS
rs for RS
r* for R*

Regular Expressions

* Examples for }° — {()7 1}

01 for {01}
0+1 for {0,1}
(0+1)" for {strings with characters 0 and 1}

101" for {strings with one 0 and any number of 1s}

Regular Expressions
and Deterministic Finite Automata

* We want to show that regular expressions are exactly
those recognized by a finite automaton.

 The proof follows a simple scheme

Regular expressions

e —~

recognize languages define languages
given by recognized by
Deterministic Finite Non-Deterministic Finite Automata
Automata with e-moves
\ can be
can be emulated by

emulated by /
\

Non-Deterministic
Finite Automata

Regular Expressions
and Deterministic Finite Automata

 Regular expressions are recognized by non-deterministic
finite automata with e-transitions

 Base steps

Start —@ Start —>Q @ Start 4@— a @
€ Z a

1€ j 14}

Regular Expressions
and Deterministic Finite Automata

e Union r+s: Get two machines that recognize r and s

e Connect a new start state to the start states of the two
machines

 Connect all final states with a new, single final state

Machine that recognizes R N
-

Machine that recognizes S

Regular Expressions
and Deterministic Finite Automata

e Concatenation

Regular Expressions
and Deterministic Finite Automata

e Closure

RN

()
Machine that recognizes R
(N J
€

Regular Expressions
and Deterministic Finite Automata

e Example 01" + 1

]_ * Start ﬁ%i1 —@

QM@@/Q
01* + 1 aC{ @
@ 1 o

Regular Expressions
and Deterministic Finite Automata

* Now, we need to show that every language accepted by a
deterministic finite automaton is regular.

 GivenaDFA M = ({QI7"‘7QR}7Z757Q17F)
e Define Rﬁj

e Set of strings that go from State i to State j without
going through any state numbered higher than k

e \We can define R,’Z ; by recursion
R}, ={a|d(qi,a) = q;} U{e}
R} ;={a|d(g,a) =q;} ifi#]
k k—1;pk—1\% pk—1 k—1

Regular Expressions
and Deterministic Finite Automata

e Observation: Rk iS given by a regular expression
* Proof by inductlon on k

e Base: k=0
. R?,j is a finite set of strings with a single symbol or
£

* |nduction step: kK —> k+1

* By induction hypothesis, we have regular

expressions such that L(Rk 1) _ f,JfJ 1

e Simply define a regular expression for R by

k k
Tkzl(rk kl) () Tk)+Tz',j

Regular Expressions
and Deterministic Finite Automata

e |t follows that the language accepted by a DFA is regular:

Regular Expressions
and Deterministic Finite Automata

e Example:

1 1.2
k

1.3

Start —{ dq 0 @ 1 7“]2{,1
k

€
AN 72,2 6
I

0 0,1 k

Regular Expressions
and Deterministic Finite Automata

e Example:

11
12

’
k

13
7"k

Start —{ 94 0 @ 1 i,l

\ Ta o

0 k

01 Ta 3
r

r1(r71)) g + 795, =004+ €e=00+¢€ | 31
r

3,2

Ol(r(l)’l)*r(l),g—l—rg’g :OE*l—l—l :()1_|_1 T]3€3

- OO

— N
|
|

-

el

-
-

1
o9

J
Y

-
M+ =S—=MO—OM

7“%3 (A

=
M+=
—

2,
1 0 /.0 0 0
r3o =731(r 1) o +732=00+1=0+1

E
1]
o
=
I
-
-
Il
N

Regular Expressions
and Deterministic Finite Automata

e Example:

-
]
o

k=1 k=2

€ (00)"
0
1
0

k
1.1
k
12

1
k

13
Tk

Start —{ 91 0 @ 1 %1

\ Ta o
0 0,1 TSZS
k?
3.1
k
T3 o
k
'3 3

e + 00
1+ 01

-
M+ S—=MO—OM

e
-

)
+1
c

1= 7“%,2(7“%,2)*7“%,1 T 7“%,1 =0(e +00)"0+ ¢ = (00)" 4 ¢ = (00)

Regular Expressions
and Deterministic Finite Automata

* Exampl

Tf,1 E E (OO)*

| 00

"“k,s 1 1

Start —{ 91 0 @ 1 7"%1 O O
\ Ta o 6 e + 00
0 0.1 rss] 1401

: 7“%,2(7“%,2)*7'%,2 + 7“%,2 Tl?f,l @ @
0(e + 00)* (¢ 4 00) + 0 r5o 04+ 10 4+ 1

0(00)* e—I—O(OO) (00) + 0 s € €

(
0(00)* +
(00)*

Regular Expressions
and Deterministic Finite Automata

* Exampl:

Tf,1 E E (OO)*
| o000
"“k,s 1 1
Start —{ 94 0 @ 1 T%l O O
\O 7“%2 6 e + 00
0, rss | 1+01
7“%,3 = 7'%,2(7%,2)*7“%,3 + 7“%,3 T%’l @ @
= oe+00)(1+on+1 | 32 01041
= 0(00)*(1+01) + 1 s € €
= 0(00)"1 4+ 0(00)"01 4+ 1

Regular Expressions
and Deterministic Finite Automata

e Example: k=0 | k=1 k=2
72,1 E E (OO)*
1 12 O O
"“If,s 1 1
Start —{ 0+ 0 @ 1 T%’l O O
L 7“%2 6 + 00
0 0,1 T3 3 1 + 01
k
130 = TaolTa2) Toy + 734 :g; 0 9_ 10 —|@— 1
= (e+00)(e+00)*0+0 Tig’g €E €
= (00)*0+ 0 |

0(00)*

Regular Expressions
and Deterministic Finite Automata

e Example:

1
Start *M@ 1

AN

0 0,1

1 /1 \x.1 1
ra.2(T2.2) T30 + 735

(e +00)(e +00)*(e + 00) + (e + 00)
(00)"

1.1
12
1.3
T2 1
Ta o
Ta 3
T3 1
3.2
3.3

0

k=0

€
0
1
0
€ «
1 1
)
|
c

k=1 k=2

€ (00)°
0
1
0
+ 00
+01

)
10 + 1

€

Regular Expressions
and Deterministic Finite Automata

* Exampl:

Tf,1 E E (OO)*
1 L1
1.3
0 0,1 T]2€,2 6 €T OO
7“5,3 1 1+ 01
— T%,2(T%,2)*T%,3‘|‘r%,3 Tl?f,l @ @
= (e+00)(e+00)"(1+01) +(1+01) | +5, 04+ 10 + 1
— (00)*(1+01) 53 € €

(00)*1 + (00)*01
0*1

Regular Expressions
and Deterministic Finite Automata

e Example:

k=0 k=1 k=2

€ (00)"
0
1
()

1.1
12

€
1 o
1
I
_F.
€

+ 00
+ 01

)
10 + 1

€

NG 72,2
0 0,1 TSZS

2 R BN 1 "3,1
(r2,2) 721 + 731 k0
1)(e + 00)*0 + 0 r’gjg

bl
VR
S

(04 1)(00)*0

Regular Expressions
and Deterministic Finite Automata

e Example:
1
Startam 1
\0 0,1
2 1 /1 \x.1 1
3.2 r32(722) 122+ 735

(0+

0+

1)(e 4+ 00)* (e 4+ 00) + (0 + 1)
1)(00)"

1.1
12
1.3
T2 1
Ta o
Ta 3
T3 1
T3 o
3.3

0

k=0

€
0
1
0
€ «
1 1
)
_F.
c

k=1 k=2

€ (00)°
0
1
0
+ 00
+01

)
10 + 1

€

Regular Expressions
and Deterministic Finite Automata

* Example: _
1 8
Start d4 0 @ 1 8)
0 0,1 6
”'“:%,3 = T§,2(T%,2)*T%,3+T§,3 @

— 4+ * k
AR | AL
= (0-+1)((00)"1 + (00)°01) + ¢ €

— (O—r 1)0*1—|—€

Regular Expressions
and Deterministic Finite Automata

e Example:

1
Start *(@ 1

0

2

0*1(e+ (0

T1,3(7“§,3)*T3,2 71,2

0,1

2

1)0*1)7(0

1)(00)"

0(00)*

0*1((0 + 1)0*1)" (0 + 1)(00)* + 0(00)*

-

1
Start *(@ 1

Regular Expressions
and Deterministic Finite Automata

e Example:

0 0,1

+(0+1)0%1)" (e + (0 +1)0*1) + 0*1
0+ 1)0*1)" + 0*1
0+ 1)0%1)"

T]f,1
T]f,2
"“If,?)
7“]5,1
7“5,2
"°]2€,3
""]?f,1
T§,2
7“§,3

-

Regular Expressions
and Deterministic Finite Automata

e Therefore

L(M) = 7“:13,24‘7“%,3
= 0*1((0+1)0*1) (e + (0 + 1)(00)*) + 0(00)*

1
Start *@ 1

0 0,1

Finite Automata with Output

e Moore machines

* Whenever the machine is in state / it outputs a symbol
depending on the state

e Example:

e A Moore machine that calculates the remainder
modulo 3 of a binary number

e To derive the formula, consider

a.x (mod3) = 2a+zx (mod 3)
= (Za (mod 3)) + (:13 (mod 3))
= 2(@ (mod 3)) + (CL‘ (mod 3))

Finite Automata with Output

a (mod 3) x (mod 3) a.xr (mod 3)
0 0

m
0
1
2
0
1
2

O DN — = O
_ O = O =

0) 1 2
1\ O\
- o
~—
O <
0 1

Finite Automata with Output

e Mealy Machines
e Qutput depends on the current state and the transition

%

1/n

Start

.
O

1/y

Finite Automata with Output

* |t can be shown that Mealy and Moore machines are
equivalent

