Data Structures

Algorithms

- Organize data to make access / processing fast
	- Speed depends on the internal organization
	- Internal organization allows different types of accesses

- Problems:
	- Large data is nowadays distributed over several data centers
	- Need to take advantage of storage devices

- **Internal Memory**
	- DRAM: fast access, byte addressable
- Storage
	- Hard Disk Drives
		- Data in blocks
		- Decent for streaming (consecutive blocks)
		- Bad for random access (~10 msec per access)
	- Solid State Disks
		- Data in blocks (called pages)
		- Decent access times (~1msec per access)

- Thread safe:
	- Several threads can safely access data structure
	- Need collaboration between threads
		- Implemented with locks
		- Implemented without locks
			- Difficult to do
			- Needs atomic instructions: Hardware and compiler support

- Caches can make big performance differences
	- Cache aware algorithms
		- Get the parameter of the caches
	- Cache oblivious algorithms
		- Work well for all cache sizes
	- Dumb algorithms
		- Do not pay attention to caches at all
		- Frequent surprises with bad performance

Example

- Multiplying two big, non-dense matrices
	- Cache aware:
		- Break matrices into subsquares
		- Three subsquares fit comfortably into cache

Example

- Cache Oblivious
	- Use a Divide and Conquer Algorithm that subdivides the sub-squares repeatedly
	- Only **cold** cache misses when a new sub-square needs to be loaded into cache.

- Dictionary Key Value Store
	- CRUD operations: create, read, update, delete
	- Solutions differ regarding read and write speeds

- Range Queries (Big Table, RP)
	- CRUD and range operation

- Priority queue:
	- Insert, retrieve minimum and delete it

- Log:
	- Append, Read

- B-trees: In-memory data structure for CRUD and range queries
	- Balanced Tree
	- Each node can have between *d* and 2*d* keys with the exception of the root
	- Each node consists of a sequence of node pointer, key, node pointer, key, …, key, node pointer
	- Tree is ordered.
		- All keys in a child are between the keys adjacent to the node pointer

• Example: 2-3 tree: Each node has two or three children

- Read dog:
	- Load root, determine location of dog in relation to the keys
	- Follow middle pointer
	- Follow pointer to the left
	- Find "dog"

• Search for "auk" :

- Range Query c I \bullet
	- Determine location of c and I

Recursively enumerate all nodes between the lines \bullet starting with root

- Capacity: With *l* levels, minimum of $1 + 2 + 2^2 + ... + 2^l$ nodes:
	- $1(2^{l+1} 1)$ keys
- Maximum of $1 + 3 + 3^2 + ... + 3^l$ nodes
	- $\frac{2}{2}(3^{l+1}-1)$ keys 2 $(3^{l+1} - 1)$

- Inserts:
	- Determine where the key should be located in a leaf
	- Insert into leaf node
	- Leaf node can now have too many keys
	- Take middle node and elevate it to the next higher level
	- Which can cause more "splits"

 $\pmb{\star}$

- Insert: Lock all nodes from root on down so that only one process can operate on the nodes
- Tree only grows a new level by splitting the root

- Using only splits leads to skinny trees
	- Better to make use of potential room in adjacent nodes
	- Insert "ewe".
		- Node elk-emu only has one true neighbor.
			- Node kid does not count, it is a cousin, not a sibling

• Insert ewe into

 $\hat{\mathbf{x}}$

• Insert ewe

- Promote elk. elk is guaranteed to come right after eft.
- Demote eft

• Insert eft into the leaf node

- Left rotate
	- Overflowing node has a sibling to the left with space
	- Move left-most key up
	- Lower left-most key

Now insert "ai"

Insert creates an overflowing node Only one neighboring sibling, but that one is full Split!

Middle key moves up

Unfortunately, this gives another overflow But this node has a right sibling not at full capacity

Right rotate: Move "bot" up Move "doe" down Reattach nodes

Move "bot" up Move "doe" down Reattach the dangling node

"bot" had moved up and replaced doe

The "emu" node needs to receive one key and one pointer

B-tree

- Deletes
	- Usually restructuring not done because there is no need
	- Underflowing nodes will fill up with new inserts

B-tree

- Implementing deletion anyway:
	- Can only remove keys from leaves
	- If a delete causes an underflow, try a rotate into the underflowing node
	- If this is not possible, then merge with a sibling
		- A merge is the opposite of a split
	- This can create an underflow in the parent node
		- Again, first try rotate, then do a merge

Delete "kit" "kit" is in an interior node. Exchange it with the key in the leave immediately before "fox"

After interchanging "fox" and "kit", can delete "kit"

Now delete "fox"

Step 1: Find the key. If it is not in a leaf Step 2: Determine the key just before it, necessarily in a leaf Step 3: Interchange the two keys

Step 4: Remove the key now from a leaf

This causes an underflow Remedy the underflow by right rotating from the sibling

Everything is now in order

Now delete fly

Switch "fly" with "emu" remove "fly" from the leaf Again: underflow

Cannot left-rotate: There is no left sibling Cannot right-rotate: The right sibling has only one key Need to merge: Combine the two nodes by bringing down "elk"

We can merge the two nodes because the number of keys combined is less than 2 *k*

Delete "emu"

Switch predecessor, then delete from node

Results in an underflow

Results in an underflow But can rotate a key into the underflowing node

Result after left-rotation

Interchange "eel" with its predecessor Delete "eel" from leaf: Underflow

Need to merge

Merge results in another underflow Use right rotate (though merge with right sibling is possible)

"ass" goes up, "bot" goes down One node is reattached

Reattach node

Insert bot \bullet

- Inserting bot in the leaf
	- Leads to an overflow

- Since rotates are not possible:
- Split: Middle node goes up, left and right become their own nodes

Activities koi cat gib rat dzo emu hen kea ass boa OX sow \downarrow у fly fox jay kid kit pig pug tit yak auk bot cob cod eel gnu goa moa olm roc roe ani asp

Insert ant \bullet

• Insert ant into leaf: Leaf is now at overflow

• Right rotate: asp goes up, ass goes down

• Insert bat

• Insert into leaf: overflow

• Right rotate: bat goes up, boa goes down

• Insert bee

• Insert into leaf

- Need to split: boa goes up, bee and bot get their own nodes
- Now there is an overflow at a higher level
- Rotate is not possible

Activities

- Now we have yet another overflow
- Need to do a right rotate: gib goes up and koi goes down

• Reattach the dangling pointer

• Final result

Activities ani ant bat cat $\cosh \cot \left| \right|$ eel $\left| \right|$ fly fox dzo emu gnu goa $\vert \cdot \vert$ jay $\vert \cdot \vert$ kid kit hen kea gib mod olm | pig pug ox koi rat roc roe $\begin{array}{|c|c|}$ tit yak sow ass auk $\vert \vert$ bee $\vert \vert$ bot asp boa

• Delete koi

· Switch with predecessor

• Delete koi from leave

Done \bullet

Activities ani ant bat cat $\cosh \cot \left| \right|$ eel $\left| \right|$ fly fox dzo emu gnu goa $\vert \vert$ jay $\vert \vert$ kid hen kea gib moa olm $\vert \vert$ pig pug ox kit rat roc roe $\vert \vert$ tit yak sow ass auk $\vert \vert$ bee $\vert \vert$ bot asp boa

• Delete gib using successor

• After swap, delete gib from leaf

• Delete kea with predecessor

Activities ani ant bat cat $\cosh \cot \left| \right|$ eel $\left| \right|$ fly fox dzo emu goa **| key** | kid hen **jay** gnu mod olm | pig pug ox kit rat roc roe $\vert \vert$ tit yak sow ass auk $\vert \vert$ bee $\vert \vert$ bot asp boa

• Delete from leaf

- Underflow:
- Rotate is not possible
- Merge: Two candidates, merge right

• Delete moa and pig

• Delete ox with successor

• Now delete from leaf

• Underflow: need to do a merge

- Now the leaf is fine, but the parent has an underflow
- Cannot rotate, so we need to do another merge
- This time we merge left

• Need to re-attach dangling node pointer

• Delete boa with predecessor

• Swap

- Delete
- Deal with underflow
- Only merge is possible

- This leaves the parent at an underflow
- Left sibling is at minimum capacity
- Right sibling is not
- Rotate Left: dzo goes up, cat goes down

• Need to re-attach dangling node pointer

• And pretty-print

• The End

In real life

- Use B+ tree for better access with block storage
	- Data pointers / data are only in the leaf nodes
	- Interior nodes only have keys as signals
	- Link leaf nodes for faster range queries.

B+ Tree

B+ Tree

- Real life B+ trees:
	- Interior nodes have many more keys (e.g. 100)
	- Leaf nodes have as much data as they can keep
	- Need few levels:
		- Fast lookup

Combating Fringe Behavior

- Restructuring often happens with (almost) consecutive inserts
	- "Waves of misery" in running databases
- Use a way to buffer inserts
Combating Fringe Behavior

- Log-structured Merge Trees
	- Two related B-trees
		- Can optimize merge of L1 into L2
			- Allow merges to run in parallel with CRUD

Combating Fringe Behavior

- Log-structured Merge Trees
	- Keep L1-tree in main memory
	- Keep L2-tree in storage
	- Use Bloom filters in order to check whether keys are in either

- Central idea of hashing:
	- Calculate the location of the record from the key
	- Hash functions:
		- Can be made indistinguishable from random function
			- SH3, MD5, …
			- Often simpler
				- ID modulo slots

- Can lead to collisions:
	- Two different keys map into the same address
	- Two ways to resolve:
		- **• Open Addressing**
			- Have a rule for a secondary address, etc.
		- **• Chaining**
			- **•** Can store more than one datum at an address

- Open addressing example:
	- Linear probing: Try the next slot

```
def hash(a_string):
  accu = 0i = 1 for letter in a_string:
      accu += ord(letter) *i
      i+=1 return accu % 8
```


Insert "fly" 7

Since spot 2 is taken, move to the next spot

Since spot is taken, move to the next

www.shutterstock.com · 762496525

Try out location 2. Occupied, but not by "gnu"

www.shutterstock.com · 762496525

hash("gnu") \rightarrow 2

Try out location 3. Find "gnu"

"pig", 7

7

Look at location 3: someone else is there Look at location 4: someone else is there Look at location 5: nobody is there, so if it were in the dictionary, it would be there

- Linear probing leads to convoys:
	- Occupied cells tend to coalesce
- Quadratic probing is better, but might perform worse with long cache lines
- Large number of better versions are used:
	- Passbits
	- Cuckoo hashing
		- Uses two hash functions
	- Robin Hood hashing ...

- Chaining
	- Keep data mapped to a location in a "bucket"
		- Can implement the bucket in several ways
			- Linked List

Chaining Example with linked lists

Chaining Example with an array of pointers (with overflow pointer if necessary)

Chaining with fixed buckets Each bucket has two slots and a pointer to an overflow bucket

- Extensible Hashing:
	- Load factor *^α ⁼* Space Used / Space Provided
	- Load factor determines performance
	- Idea of extensible hashing:
		- Gracefully add more capacity to a growing hash table

- Extensible Hashing:
	- Uses a lot of metadata to reflect history of splitting
		- But only splits buckets when they are needed
	- Linear Hashing
		- Splits buckets in a predefined order
		- Minimal meta-data
		- Sounds like a horrible idea, but …

- Assume a hash function that creates a large string of bits
	- We start using these bits as we extend the address space
	- Start out with a single bucket, Bucket 0
	- All items are located in Bucket 0

Items with keys 19, 28, 33

- Eventually, this bucket will overflow
	- E.g. if the load factor is more than 2
	- Bucket 0 splits
	- All items in Bucket 0 are rehashed:
		- Use the last bit in order to determine whether the item goes into Bucket 0 or Bucket 1
		- Address is $h_1(c) = c \pmod{2}$

• After the split, the hash table has two buckets:

• After more insertions, the load factor again exceeds 2

- Again, the bucket splits.
	- But it has to be Bucket 0

- For the rehashing, we now use two bits, i.e. $h_2(c) = c \pmod{4}$
	- But only for those items in Bucket 0

• After some more insertions, Bucket 1 will split

- The state of a linear hash table is described by the number N of buckets
	- The level l is the number of bits that are being used to calculate the hash
	- The split pointer S points to the next bucket to be split
	- The relationship is

$$
N=2^l+s
$$

• This is unique, since always $s < 2^l$

- Addressing function
	- The address of an item with key c is calculated by

```
def address(c): 
a = hash(c) % 2**1if a < s: 
   a = hash(c) % 2**(1+1)return a
```
• This reflects the fact that we use more bits for buckets that are already split

$$
N=1=2^0+0
$$

Number of buckets: 1 Split pointer: 0 Level: 0

```
def address(c): 
a = hash(c) % 2**1if a < s:
   a = hash(c) % 2**(1+1)return a
```


 $N = 2 = 2^1 + 0$

Number of buckets: 2 Split pointer: 0 Level: 1

```
def address(c): 
a = hash(c) \, % \, 2**1if a < s: 
   a = hash(c) % 2**(1+1)return a
```


Add items with hashes 40 and 11 This gives an overflow and we split Bucket 0

 $N = 3 = 2^1 + 1$

Number of buckets: 3 Split pointer: 1 Level: 1

```
def address(c): 
a = hash(c) \, % \, 2**1if a < s:
   a = hash(c) % 2**(1+1)return a
```


No items were moved

 $N = 3 = 2^1 + 1$

Number of buckets: 3 Split pointer: 1 Level: 1

Add items 6, 35

Because of overflow, we split Bucket 1

$$
N=4=2^2+0
$$

Number of buckets: 4 Split pointer: 0 Level: 2


```
def address(c): 
a = hash(c) % 2**1if a < s: 
   a = hash(c) % 2**(1+1)return a
```

$$
N=4=2^2+0
$$

Number of buckets: 4 Split pointer: 0 Level: 2

```
def address(c): 
a = hash(c) % 2**1if a < s:
   a = hash(c) % 2**(1+1)return a
```


Now add keys 8, 49

Creates an overflow! Need to split!

 $N = 5 = 2^2 + 1$

Number of buckets: 1 Split pointer: 1 Level: 2

```
def address(c): 
a = hash(c) \, % \, 2**1if a < s:
   a = hash(c) % 2**(1+1)return a
```


 $N = 5 = 2^2 + 1$

Number of buckets: 5 Split pointer: 1 Level: 2

```
def address(c): 
a = hash(c) \, % \, 2**1if a < s:
   a = hash(c) % 2**(1+1)return a
```


Add keys 9, 42

Creates an overflow! Need to split!

$$
N=6=2^2+2
$$

Number of buckets: 1 Split pointer: 2 Level: 2

```
def address(c): 
a = hash(c) \, % \, 2**1if a < s:
   a = hash(c) % 2**(1+1)return a
```


No item actually moved, but average load factor is now again under 2.

 $N = 6 = 2^2 + 2$

Number of buckets: 6 Split pointer: 2 Level: 2

```
def address(c): 
a = hash(c) \, % \, 2**1if a < s:
   a = hash(c) % 2**(1+1)return a
```

$N = 7 = 2^2 + 3$

Number of buckets: 7 Split pointer: 3 Level: 2

```
def address(c): 
a = hash(c) % 2**1if a < s:
   a = hash(c) % 2**(1+1)return a
```


$$
N = 7 = 2^2 + 3
$$

Number of buckets: 7 Split pointer: 3 Level: 2

```
def address(c): 
a = hash(c) \, % \, 2**1if a < s: 
   a = hash(c) % 2**(1+1)return a
```
92, 74

Bucket 0: 40, 8 Bucket1: 9, 33, 49 Bucket 2: 10, 42, 74 Bucket 3: 11, 19, 35 Bucket 4: 28, 92 Bucket 5: 5 Bucket 6: 6

 $N = 8 = 2^3 + 0$

Number of buckets: 8 Split pointer: 0 Level: 3

```
def address(c): 
a = hash(c) % 2**1if a < s:
   a = hash(c) % 2**(1+1)return a
```


 $N = 8 = 2^3 + 0$

Number of buckets: 8 Split pointer: 0 Level: 3

def address(c): a = hash(c) % 2**l if a < s: a = hash(c) % 2**(l+1) return a

 $N = 9 = 2^3 + 1$

Number of buckets: 9 Split pointer: 1 Level: 3

```
def address(c): 
a = hash(c) % 2**1if a < s:
   a = hash(c) % 2**(1+1)return a
```


 $N = 9 = 2^3 + 1$

Number of buckets: 9 Split pointer: 1 Level: 3

```
def address(c): 
a = hash(c) % 2**1if a < s:
   a = hash(c) % 2**(1+1)return a
```


81

$$
N = 10 = 2^3 + 2
$$

Number of buckets: 10 Split pointer: 2 Level: 3

```
def address(c): 
a = hash(c) % 2**1if a < s: 
   a = hash(c) % 2**(1+1)return a
```


Linear Hashing

- Observations:
	- Buckets split in fixed order
		- 0, 0,1, 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, …, 15, 0, …
		- Address calculation is modulo 2^l , i.e. the *l* least significant bits
		- Buckets 0, 1, …, s-1 and 2***l,* 2***l+*1, … *N*-1 are already split, they have on average half the size of the buckets *s, s*+1, …, 2***l*.

Linear Hashing

- Observations:
	- An overflowing bucket is not necessarily split immediately
	- Sometimes, a split leaves all keys in the splitting bucket or moves them all to the new bucket
- On average, a bucket will have *^α* items in them