
Algorithms

Data Structures

Types of Data Structures
• Organize data to make access / processing fast

• Speed depends on the internal organization

• Internal organization allows different types of accesses

• Problems:

• Large data is nowadays distributed over several data
centers

• Need to take advantage of storage devices

Types of Data Structures
• Internal Memory

• DRAM: fast access, byte addressable

• Storage

• Hard Disk Drives

• Data in blocks

• Decent for streaming (consecutive blocks)

• Bad for random access (~10 msec per access)

• Solid State Disks

• Data in blocks (called pages)

• Decent access times (~1msec per access)

Types of Data Structures
• Thread safe:

• Several threads can safely access data structure

• Need collaboration between threads

• Implemented with locks

• Implemented without locks

• Difficult to do

• Needs atomic instructions: Hardware and compiler
support

Types of Data Structures
• Caches can make big performance differences

• Cache aware algorithms

• Get the parameter of the caches

• Cache oblivious algorithms

• Work well for all cache sizes

• Dumb algorithms

• Do not pay attention to caches at all

• Frequent surprises with bad performance

Example
• Multiplying two big, non-dense matrices

• Cache aware:

• Break matrices into subsquares

• Three subsquares fit comfortably into cache

x

Example
• Cache Oblivious

• Use a Divide and Conquer Algorithm that subdivides
the sub-squares repeatedly

• Only cold cache misses when a new sub-square needs
to be loaded into cache.

Types of Data Structure

• Dictionary — Key - Value Store

• CRUD operations: create, read, update, delete

• Solutions differ regarding read and write speeds

Types of Data Structure
• Range Queries (Big Table, RP)

• CRUD and range operation

Types of Data Structure
• Priority queue:

• Insert, retrieve minimum and delete it

Types of Data Structure
• Log:

• Append, Read

B-Trees
• B-trees: In-memory data structure for CRUD and range

queries

• Balanced Tree

• Each node can have between d and 2d keys with the
exception of the root

• Each node consists of a sequence of node pointer, key,
node pointer, key, …, key, node pointer

• Tree is ordered.

• All keys in a child are between the keys adjacent to
the node pointer

B-Trees
• Example: 2-3 tree: Each node has two or three children

ant asp

bug

cow cur

olm ram

dab kea

kid pen rat zho

eft

doe dog elk emu

B-Trees
• Read dog:

• Load root, determine location of dog in relation to the
keys

• Follow middle pointer

• Follow pointer to the left

• Find “dog”

B-Trees

ant asp

bug

cow cur

olm ram

dab kea

kid pen rat zho

eft

doe dog elk emu

B-Trees
• Search for “auk” :

ant asp

bug

cow cur

olm ram

dab kea

kid pen rat zho

eft

doe dog elk emu

B-Trees
• Range Query c - l

• Determine location of c and l

ant asp

bug

cow cur

olm ram

dab kea

kid pen rat zho

eft

doe dog elk emu

B-Trees
• Recursively enumerate all nodes between the lines

starting with root

ant asp

bug

cow cur

olm ram

dab kea

kid pen rat zho

eft

doe dog elk emu

B-trees
• Capacity: With l levels, minimum of

nodes:

• keys

• Maximum of nodes

• keys

1 + 2 + 22 + … + 2l

1(2l+1 − 1)
1 + 3 + 32 + … + 3l

2
2

(3l+1 − 1)

B-trees
• Inserts:

• Determine where the key should be located in a leaf

• Insert into leaf node

• Leaf node can now have too many keys

• Take middle node and elevate it to the next higher level

• Which can cause more “splits”

B-trees

ant asp

bug

cow cur

olm ram

dab kea

kid pen rat zho

eft

doe dog elk emu

eel

B-trees

ant asp

bug

cow cur

olm ram

dab kea

kid pen rat zho

eft

doe dog eel elk emu

B-trees

ant asp

bug

cow cur

olm ram

dab kea

kid pen rat zho

dog eft

elk emu

doe eel

B-trees
• Insert: Lock all nodes from root on down so that only one

process can operate on the nodes

• Tree only grows a new level by splitting the root

B-Trees
• Using only splits leads to skinny trees

• Better to make use of potential room in adjacent nodes

• Insert “ewe”.

• Node elk-emu only has one true neighbor.

• Node kid does not count, it is a cousin, not a
sibling

B-tree
• Insert ewe into

ant asp

bug

cow cur

olm ram

dab kea

kid pen rat zho

dog eft

elk emudoe eel

B-tree
• Insert ewe

ant asp

bug

cow cur

olm ram

dab kea

kid pen rat zho

dog eft

elk emu ewedoe eel

B-tree
• Promote elk. elk is guaranteed to come right after eft.

• Demote eft

ant asp

bug

cow cur

olm ram

dab kea

kid pen rat zho

dog elk

 emu ewedoe eel

eft

B-tree
• Insert eft into the leaf node

ant asp

bug

cow cur

olm ram

dab kea

kid pen rat zho

dog elk

 emu ewedoe eel eft

B-tree
• Left rotate

• Overflowing node has a
sibling to the left with
space

• Move left-most key up

• Lower left-most key

B F

 G HA C D

B F

 G HA C D E

C F

 G HA B D E

B-tree

oxemuass bot

doe kit

ant ape auk bat bug cat eel elk fly fox koi owl rat sow

Now insert “ai”

B-tree

oxemuass bot

doe kit

ai ant ape auk bat bug cat eel elk fly fox koi owl rat sow

Insert creates an overflowing node
Only one neighboring sibling, but that one is full

Split!

B-tree

oxemuass bot

doe kit

ai ant ape auk bat bug cat eel elk fly fox koi owl rat sow

ant

Middle key moves up

B-tree

oxemu

doe kit

 ape auk bat bug cat eel elk fly fox koi owl rat sow ai

ant ass bot

Unfortunately, this gives another overflow
But this node has a right sibling not at full capacity

B-tree

oxemu

doe kit

 ape auk bat bug cat eel elk fly fox koi owl rat sow ai

ant ass bot

Right rotate:
Move “bot” up

Move “doe” down
Reattach nodes

B-tree

oxemu

doe kit

 ape auk bat bug cat eel elk fly fox koi owl rat sow ai

ant ass bot

Move “bot” up
Move “doe” down

Reattach the dangling node

B-tree

oxemu

bot kit

 ape auk bat bug cat eel elk fly fox koi owl rat sow ai

ant ass
dangling

doe

“bot” had moved up
and replaced doe

The “emu” node needs
to receive one key and

one pointer

B-tree

oxemu

bot kit

 ape auk bat bug cat eel elk fly fox koi owl rat sow ai

ant ass
dangling

doe

B-tree
• Deletes

• Usually restructuring not done because there is no
need

• Underflowing nodes will fill up with new inserts

B-tree
• Implementing deletion anyway:

• Can only remove keys from leaves

• If a delete causes an underflow, try a rotate into the
underflowing node

• If this is not possible, then merge with a sibling

• A merge is the opposite of a split

• This can create an underflow in the parent node

• Again, first try rotate, then do a merge

B-tree

oxdoe emu

bot kit

 ape auk bat bug cat eel elk fly fox koi owl rat sow ai

ant ass

Delete “kit”

Delete “kit”
“kit” is in an interior node.

Exchange it with the key in the leave
immediately before

“fox”

B-tree

oxdoe emu

bot fox

 ape auk bat bug cat eel elk fly kit koi owl rat sow ai

ant ass

After interchanging “fox” and “kit”, can delete “kit”

B-tree

oxdoe emu

bot fox

 ape auk bat bug cat eel elk fly koi owl rat sow ai

ant ass

Now delete “fox”

B-tree

oxdoe emu

bot fox

 ape auk bat bug cat eel elk fly koi owl rat sow ai

ant ass

Step 1: Find the key. If it is not in a leaf
Step 2: Determine the key just before it, necessarily in a leaf
Step 3: Interchange the two keys

B-tree

oxdoe emu

bot fly

 ape auk bat bug cat eel elk fox koi owl rat sow ai

ant ass

Step 4: Remove the key now from a leaf

B-tree

oxdoe emu

bot fly

 ape auk bat bug cat eel elk koi owl rat sow ai

ant ass

This causes an underflow
Remedy the underflow by right rotating from the sibling

B-tree

oxdoe elk

bot fly

 ape auk bat bug cat eel emu koi owl rat sow ai

ant ass

Everything is now in order

B-tree

oxdoe elk

bot fly

 ape auk bat bug cat eel emu koi owl rat sow ai

ant ass

Now delete fly

B-tree

oxdoe elk

bot emu

 ape auk bat bug cat eel koi owl rat sow ai

ant ass

Switch “fly” with “emu”
remove “fly” from the leaf

Again: underflow

B-tree

oxdoe elk

bot emu

 ape auk bat bug cat eel koi owl rat sow ai

ant ass

Cannot left-rotate: There is no left sibling
Cannot right-rotate: The right sibling has only one key

Need to merge: Combine the two nodes by bringing down “elk”

B-tree

oxdoe elk

bot emu

 ape auk bat bug cat eel koi owl rat sow ai

ant ass

We can merge the two nodes because
the number of keys combined is less than 2 k

B-tree

oxdoe

bot emu

 ape auk bat bug cat eel elk koi owl rat sow ai

ant ass

B-tree

oxdoe

bot emu

 ape auk bat bug cat eel elk koi owl rat sow ai

ant ass

Delete “emu”

B-tree

oxdoe

bot elk

 ape auk bat bug cat eel koi owl rat sow ai

ant ass

Switch predecessor, then delete from node

B-tree

oxdoe

bot elk

 ape auk bat bug cat eel koi owl rat sow ai

ant ass

Now delete “elk”

B-tree

oxdoe

bot eel

 ape auk bat bug cat koi owl rat sow ai

ant ass

Results in an underflow

B-tree

oxdoe

bot eel

 ape auk bat bug cat koi owl rat sow ai

ant ass

Results in an underflow
But can rotate a key into the

underflowing node

B-tree

oxcat

bot eel

 ape auk bat bug doe koi owl rat sow ai

ant ass

Result after left-rotation

B-tree

oxcat

bot eel

 ape auk bat bug doe koi owl rat sow ai

ant ass

“Now delete “eel”

B-tree

oxcat

bot doe

 ape auk bat bug koi owl rat sow ai

ant ass

Interchange “eel” with its predecessor
Delete “eel” from leaf:

Underflow

B-tree

oxcat

bot doe

 ape auk bat bug koi owl rat sow ai

ant ass

Need to merge

B-tree

ox

bot doe

 ape auk bat bug cat koi owl rat sow ai

ant ass

Merge results in another underflow
Use right rotate

(though merge with right sibling
is possible)

B-tree

ox

bot doe

 ape auk bat bug cat koi owl rat sow ai

ant ass

“ass” goes up, “bot” goes down
One node is reattached

B-tree

oxbot

ass doe

 ape auk bat bug cat koi owl rat sow ai

ant

Reattach node

B-tree

oxbot

ass doe

 ape auk bat bug cat koi owl rat sow ai

ant

Activities

• Insert bot

ani asp auk boa

ass

cat gib

cob cod eel fly fox

dzo emu

gnu goa jay kid kit

hen kea

koi

moa olm pig pug

ox

rat

roc roe tit yak

sow

Activities

• Inserting bot in the leaf

• Leads to an overflow

ani asp auk boa bot

ass

cat gib

cob cod eel fly fox

dzo emu

gnu goa jay kid kit

hen kea

koi

moa olm pig pug

ox

rat

roc roe tit yak

sow

Activities

• Since rotates are not possible:

• Split: Middle node goes up, left and right become their
own nodes

ani asp

ass boa

cat gib

cob cod eel fly fox

dzo emu

gnu goa jay kid kit

hen kea

koi

moa olm pig pug

ox

rat

roc roe tit yak

sow

auk bot

Activities

• Insert ant

ani asp

ass boa

cat gib

cob cod eel fly fox

dzo emu

gnu goa jay kid kit

hen kea

koi

moa olm pig pug

ox

rat

roc roe tit yak

sow

auk bot

Activities

• Insert ant into leaf: Leaf is now at overflow

ani ant asp

ass boa

cat gib

cob cod eel fly fox

dzo emu

gnu goa jay kid kit

hen kea

koi

moa olm pig pug

ox

rat

roc roe tit yak

sow

auk bot

Activities

• Right rotate: asp goes up, ass goes down

ani ant

asp boa

cat gib

cob cod eel fly fox

dzo emu

gnu goa jay kid kit

hen kea

koi

moa olm pig pug

ox

rat

roc roe tit yak

sow

ass auk bot

Activities

• Insert bat

ani ant

asp boa

cat gib

cob cod eel fly fox

dzo emu

gnu goa jay kid kit

hen kea

koi

moa olm pig pug

ox

rat

roc roe tit yak

sow

ass auk bot

Activities

• Insert into leaf: overflow

ani ant

asp boa

cat gib

cob cod eel fly fox

dzo emu

gnu goa jay kid kit

hen kea

koi

moa olm pig pug

ox

rat

roc roe tit yak

sow

ass auk bat bot

Activities

• Right rotate: bat goes up, boa goes down

ani ant

asp bat

cat gib

cob cod eel fly fox

dzo emu

gnu goa jay kid kit

hen kea

koi

moa olm pig pug

ox

rat

roc roe tit yak

sow

ass auk boa bot

Activities

• Insert bee

ani ant

asp bat

cat gib

cob cod eel fly fox

dzo emu

gnu goa jay kid kit

hen kea

koi

moa olm pig pug

ox

rat

roc roe tit yak

sow

ass auk boa bot

Activities

• Insert into leaf

ani ant

asp bat

cat gib

cob cod eel fly fox

dzo emu

gnu goa jay kid kit

hen kea

koi

moa olm pig pug

ox

rat

roc roe tit yak

sow

ass auk bee boa bot

Activities

• Need to split: boa goes up, bee and bot get their own
nodes

• Now there is an overflow at a higher level

• Rotate is not possible

ani ant

asp bat boa

cat gib

cob cod eel fly fox

dzo emu

gnu goa jay kid kit

hen kea

koi

moa olm pig pug

ox

rat

roc roe tit yak

sow

ass auk bee bot

Activities

• Now we have yet another overflow

• Need to do a right rotate: gib goes up and koi goes down

ani ant

bat cat gib

cob cod eel fly fox

dzo emu

gnu goa jay kid kit

hen kea

koi

moa olm pig pug

ox

rat

roc roe tit yak

sow

ass auk bee bot

asp boa

Activities

• Reattach the dangling pointer

ani ant

bat cat

cob cod eel fly fox

dzo emu

gnu goa jay kid kit

hen kea

gib

moa olm pig pug

ox

koi rat

roc roe tit yak

sow

ass auk bee bot

asp boa

Activities

• Final result

ani ant

bat cat

cob cod eel fly fox

dzo emu

gnu goa jay kid kit

hen kea

gib

moa olm pig pug

ox

koi rat

roc roe tit yak

sow

ass auk bee bot

asp boa

Activities

• Delete koi

ani ant

bat cat

cob cod eel fly fox

dzo emu

gnu goa jay kid kit

hen kea

gib

moa olm pig pug

ox

koi rat

roc roe tit yak

sow

ass auk bee bot

asp boa

Activities

• Switch with predecessor

ani ant

bat cat

cob cod eel fly fox

dzo emu

gnu goa jay kid koi

hen kea

gib

moa olm pig pug

ox

kit rat

roc roe tit yak

sow

ass auk bee bot

asp boa

Activities

• Delete koi from leave

ani ant

bat cat

cob cod eel fly fox

dzo emu

gnu goa jay kid koi

hen kea

gib

moa olm pig pug

ox

kit rat

roc roe tit yak

sow

ass auk bee bot

asp boa

Activities

• Done

ani ant

bat cat

cob cod eel fly fox

dzo emu

gnu goa jay kid

hen kea

gib

moa olm pig pug

ox

kit rat

roc roe tit yak

sow

ass auk bee bot

asp boa

Activities

• Delete gib using successor

ani ant

bat cat

cob cod eel fly fox

dzo emu

gnu goa jay kid

hen kea

gib

moa olm pig pug

ox

kit rat

roc roe tit yak

sow

ass auk bee bot

asp boa

Activities

• After swap, delete gib from leaf

ani ant

bat cat

cob cod eel fly fox

dzo emu

gib goa jay kid

hen kea

gnu

moa olm pig pug

ox

kit rat

roc roe tit yak

sow

ass auk bee bot

asp boa

Activities

• Delete kea with predecessor

ani ant

bat cat

cob cod eel fly fox

dzo emu

 goa jay kid

hen kea

gnu

moa olm pig pug

ox

kit rat

roc roe tit yak

sow

ass auk bee bot

asp boa

Activities

• Delete from leaf

ani ant

bat cat

cob cod eel fly fox

dzo emu

 goa key kid

hen jay

gnu

moa olm pig pug

ox

kit rat

roc roe tit yak

sow

ass auk bee bot

asp boa

Activities

• Underflow:

• Rotate is not possible

• Merge: Two candidates, merge right

ani ant

bat cat

cob cod eel fly fox

dzo emu

 goa kid

hen jay

gnu

moa olm pig pug

ox

kit rat

roc roe tit yak

sow

ass auk bee bot

asp boa

Activities

ani ant

bat cat

cob cod eel fly fox

dzo emu

 goa jay kid

hen

gnu

moa olm pig pug

ox

kit rat

roc roe tit yak

sow

ass auk bee bot

asp boa

Activities

• Delete moa and pig

ani ant

bat cat

cob cod eel fly fox

dzo emu

 goa jay kid

hen

gnu

moa olm pig pug

ox

kit rat

roc roe tit yak

sow

ass auk bee bot

asp boa

Activities

• Delete ox with successor

ani ant

bat cat

cob cod eel fly fox

dzo emu

 goa jay kid

hen

gnu

 olm pug

ox

kit rat

roc roe tit yak

sow

ass auk bee bot

asp boa

Activities

• Now delete from leaf

ani ant

bat cat

cob cod eel fly fox

dzo emu

 goa jay kid

hen

gnu

 olm ox

pug

kit rat

roc roe tit yak

sow

ass auk bee bot

asp boa

Activities

• Underflow: need to do a merge

ani ant

bat cat

cob cod eel fly fox

dzo emu

 goa jay kid

hen

gnu

 olm

pug

kit rat

roc roe tit yak

sow

ass auk bee bot

asp boa

Activities

• Now the leaf is fine, but the parent has an underflow

• Cannot rotate, so we need to do another merge

• This time we merge left

ani ant

bat cat

cob cod eel fly fox

dzo emu

 goa jay kid

hen

gnu

 olm pug

kit rat

roc roe tit yak

sow

ass auk bee bot

asp boa

Activities

• Need to re-attach dangling node pointer

ani ant

bat cat

cob cod eel fly fox

dzo emu

 goa jay kid

hen kit

gnu

 olm pug

rat

roc roe tit yak

sow

ass auk bee bot

asp boa

Activities

ani ant

bat cat

cob cod eel fly fox

dzo emu

 goa jay kid

hen kit

gnu

 olm pug

rat

roc roe tit yak

sow

ass auk bee bot

asp boa

Activities

• Delete boa with predecessor

ani ant

bat cat

cob cod eel fly fox

dzo emu

 goa jay kid

hen kit

gnu

 olm pug

rat

roc roe tit yak

sow

ass auk bee bot

asp boa

Activities

• Swap

ani ant

bat cat

cob cod eel fly fox

dzo emu

 goa jay kid

hen kit

gnu

 olm pug

rat

roc roe tit yak

sow

ass auk boa bot

asp bee

Activities

• Delete

• Deal with underflow

• Only merge is possible

ani ant

bat cat

cob cod eel fly fox

dzo emu

 goa jay kid

hen kit

gnu

 olm pug

rat

roc roe tit yak

sow

ass auk bot

asp bee

Activities

• This leaves the parent at an underflow

• Left sibling is at minimum capacity

• Right sibling is not

• Rotate Left: dzo goes up, cat goes down

ani ant

bat cat

cob cod eel fly fox

dzo emu

 goa jay kid

hen kit

gnu

 olm pug

rat

roc roe tit yak

sow

ass auk bee bot

asp

Activities

• Need to re-attach dangling node pointer

ani ant

bat dzo

cob cod eel fly fox

emu

 goa jay kid

hen kit

gnu

 olm pug

rat

roc roe tit yak

sow

ass auk bee bot

asp cat

Activities

• And pretty-print

ani ant

bat dzo

cob cod eel fly fox

emu

 goa jay kid

hen kit

gnu

 olm pug

rat

roc roe tit yak

sow

ass auk bee bot

asp cat

Activities

• The End

ani ant

bat dzo

cob cod eel fly fox

emu

 goa jay kid

hen kit

gnu

 olm pug

rat

roc roe tit yak

sow

ass auk bee bot

asp cat

In real life
• Use B+ tree for better access with block storage

• Data pointers / data are only in the leaf nodes

• Interior nodes only have keys as signals

• Link leaf nodes for faster range queries.

B+ Tree

ant asp

asp

bug cow

kid pen

cow eft

gib kid orc pen pig pup

doe dzo

eel eftdab doe dog dzo

B+ Tree
• Real life B+ trees:

• Interior nodes have many more keys (e.g. 100)

• Leaf nodes have as much data as they can keep

• Need few levels:

• Fast lookup

Combating Fringe Behavior
• Restructuring often happens with (almost) consecutive

inserts

• “Waves of misery” in running databases

• Use a way to buffer inserts

Combating Fringe Behavior
• Log-structured Merge Trees

• Two related B-trees

• Can optimize merge of L1 into L2

• Allow merges to run in parallel with CRUD

L2 L1

Combating Fringe Behavior
• Log-structured Merge Trees

• Keep L1-tree in main memory

• Keep L2-tree in storage

• Use Bloom filters in order to check whether keys are in
either

L2 L1

Hashing
• Central idea of hashing:

• Calculate the location of the record from the key

• Hash functions:

• Can be made indistinguishable from random function

• SH3, MD5, …

• Often simpler

• ID modulo slots

Hashing
• Can lead to collisions:

• Two different keys map into the same address

• Two ways to resolve:

• Open Addressing

• Have a rule for a secondary address, etc.

• Chaining

• Can store more than one datum at an address

Hashing
• Open addressing example:

• Linear probing: Try the next slot

Hashing Example
def hash(a_string):
 accu = 0
 i = 1
 for letter in a_string:
 accu += ord(letter)*i
 i+=1
 return accu % 8

“fly”, 2

0

1
2

3

4
5

6

7
Insert “fly”

Hashing Example
def hash(a_string):
 accu = 0
 i = 1
 for letter in a_string:
 accu += ord(letter)*i
 i+=1
 return accu % 8 “gnu”, 2

“fly”, 2

0

1
2

3

4
5

6

7

Insert “gnu”
hash(“gnu”) —> 2

Since spot 2 is taken, move to the next spot

Hashing Example
def hash(a_string):
 accu = 0
 i = 1
 for letter in a_string:
 accu += ord(letter)*i
 i+=1
 return accu % 8 “gnu”, 2

“hog”, 3

“fly”, 2

0

1
2

3

4
5

6

7

Insert “hog”
hash(“hog”) —> 3

Since spot is taken, move to the next

Hashing Example
def hash(a_string):
 accu = 0
 i = 1
 for letter in a_string:
 accu += ord(letter)*i
 i+=1
 return accu % 8 “gnu”, 2

“hog”, 3

“pig”, 7

“fly”, 2

0

1
2

3

4
5

6

7

Looking for “gnu”
hash(“gnu”) —> 2

Try out location 2. Occupied, but not by “gnu”

Hashing Example
def hash(a_string):
 accu = 0
 i = 1
 for letter in a_string:
 accu += ord(letter)*i
 i+=1
 return accu % 8 “gnu”, 2

“hog”, 3

“pig”, 7

“fly”, 2

0

1
2

3

4
5

6

7

Looking for “gnu”
hash(“gnu”) —> 2

Try out location 3. Find “gnu”

Hashing Example
def hash(a_string):
 accu = 0
 i = 1
 for letter in a_string:
 accu += ord(letter)*i
 i+=1
 return accu % 8 “gnu”, 2

“hog”, 3

“pig”, 7

“fly”, 2

0

1
2

3

4
5

6

7

Looking for “ram”
hash(“ram”) —> 3

Look at location 3: someone else is there
Look at location 4: someone else is there
Look at location 5: nobody is there, so if it were in the
 dictionary, it would be there

Hashing
• Linear probing leads to convoys:

• Occupied cells tend to coalesce

• Quadratic probing is better, but might perform worse with
long cache lines

• Large number of better versions are used:

• Passbits

• Cuckoo hashing

• Uses two hash functions

• Robin Hood hashing …

Hashing
• Chaining

• Keep data mapped to a location in a “bucket”

• Can implement the bucket in several ways

• Linked List

Hashing
0:

1:

2:

3:

4:

5:

6:

7:

ape ewe sow tit

Chaining Example with linked lists

Hashing Example
ape ewe sow tit0:

1:

2:

3:

4:

5:

6:

7:

Chaining Example with an array of pointers
(with overflow pointer if necessary)

Hashing Example

7:

6:

5:

7: null null null

6: sow null null

5: null null null

4: null null null

3: null null null

2: ewe tit null

1: null null null

0: ape null null

Chaining with fixed buckets
Each bucket has two slots and a pointer

to an overflow bucket

Hashing
• Extensible Hashing:

• Load factor α = Space Used / Space Provided

• Load factor determines performance

• Idea of extensible hashing:

• Gracefully add more capacity to a growing hash
table

Linear Hashing

Linear Hashing
• Extensible Hashing:

• Uses a lot of metadata to reflect history of splitting

• But only splits buckets when they are needed

• Linear Hashing

• Splits buckets in a predefined order

• Minimal meta-data

• Sounds like a horrible idea, but …

Linear Hashing
• Assume a hash function that creates a large string of bits

• We start using these bits as we extend the address
space

• Start out with a single bucket, Bucket 0

• All items are located in Bucket 0

Items with keys 19, 28, 33

Bucket 0:

19, 28, 33

Linear Hashing
• Eventually, this bucket will overflow

• E.g. if the load factor is more than 2

• Bucket 0 splits

• All items in Bucket 0 are rehashed:

• Use the last bit in order to determine whether the
item goes into Bucket 0 or Bucket 1

• Address is h1(c) = c (mod 2)

Linear Hashing
• After the split, the hash table has two buckets:

• After more insertions, the load factor again exceeds 2

Bucket 0:

28

Bucket1:

19, 33

Bucket 0:

28, 40

Bucket1:

11, 19, 33

Linear Hashing
• Again, the bucket splits.

• But it has to be Bucket 0

• For the rehashing, we now use two bits, i.e.

• But only for those items in Bucket 0

Bucket 0:

28, 40

Bucket1:

11, 19, 33

Bucket 2:

h2(c) = c (mod 4)

Linear Hashing
• After some more insertions, Bucket 1 will split

Bucket 0:

28, 40

Bucket1:

11, 19, 33, 35

Bucket 2:

6

Bucket 0:

28, 40

Bucket1:

 33

Bucket 2:

6

Bucket 3:

11, 19, 35

Linear Hashing
• The state of a linear hash table is described by the

number of buckets

• The level is the number of bits that are being used to
calculate the hash

• The split pointer points to the next bucket to be split

• The relationship is

• This is unique, since always

N
l

s

N = 2l + s
s < 2l

Linear Hashing
• Addressing function

• The address of an item with key is calculated by

• This reflects the fact that we use more bits for buckets
that are already split

c
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

N = 1 = 20 + 0

Number of buckets: 1
Split pointer: 0
Level: 0

Bucket 0:

19, 28, 33

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

N = 2 = 21 + 0

Number of buckets: 2
Split pointer: 0
Level: 1

Bucket 0:

28

Bucket1:

19, 33

Add items with hashes 40 and 11
This gives an overflow and we split Bucket 0

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

N = 3 = 21 + 1

Number of buckets: 3
Split pointer: 1
Level: 1

Bucket 0:

28, 40

Bucket1:

11, 19, 33 split Bucket 0
Create Bucket 2
Use new hash function on items in Bucket 0

Bucket 0:

28, 40

Bucket1:

11, 19, 33

Bucket 2: No items were moved

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

N = 3 = 21 + 1

Number of buckets: 3
Split pointer: 1
Level: 1

Bucket 0:

28, 40

Bucket1:

11, 19, 33

Bucket 2: Add items 6, 35

Bucket 0:

28, 40

Bucket1:

11, 19, 33, 35

Bucket 2:

6
Because of overflow, we split
Bucket 1

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

N = 4 = 22 + 0

Number of buckets: 4
Split pointer: 0
Level: 2

Bucket 0:

28, 40

Bucket1:

11, 19, 33, 35

Bucket 2:

6

Bucket 0:

28, 40

Bucket1:

 33

Bucket 2:

6

Bucket 3:

11, 19, 35

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

N = 4 = 22 + 0

Number of buckets: 4
Split pointer: 0
Level: 2

Bucket 0:

28, 40

Bucket1:

 33

Bucket 2:

6

Bucket 3:

11, 19, 35

Now add keys 8, 49

Bucket 0:

28, 40, 8

Bucket1:

 33, 49

Bucket 2:

6

Bucket 3:

11, 19, 35
Creates an overflow!
Need to split!

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

N = 5 = 22 + 1

Number of buckets: 1
Split pointer: 1
Level: 2

Bucket 0:

28, 40, 8

Bucket1:

 33, 49

Bucket 2:

6

Bucket 3:

11, 19, 35

Bucket 0:

40, 8

Bucket1:

 33, 49

Bucket 2:

6

Bucket 3:

11, 19, 35

Bucket 4:

28
Create Bucket 4.
Rehash Bucket 0.

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

N = 5 = 22 + 1

Number of buckets: 5
Split pointer: 1
Level: 2

Bucket 0:

40, 8

Bucket1:

 33, 49

Bucket 2:

6

Bucket 3:

11, 19, 35

Bucket 4:

28
Add keys 9, 42

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

6, 42

Bucket 3:

11, 19, 35

Bucket 4:

28

Creates an overflow!
Need to split!

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

N = 6 = 22 + 2

Number of buckets: 1
Split pointer: 2
Level: 2

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

6, 42

Bucket 3:

11, 19, 35

Bucket 4:

28

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

6, 42

Bucket 3:

11, 19, 35

Bucket 4:

28

Bucket 5:

No item actually moved, but average load factor is now
again under 2.

Split

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

N = 6 = 22 + 2

Number of buckets: 6
Split pointer: 2
Level: 2

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

6, 42

Bucket 3:

11, 19, 35

Bucket 4:

28

Bucket 5:
add 5,10

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

6, 10, 42

Bucket 3:

11, 19, 35

Bucket 4:

28

Bucket 5:

5

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

N = 7 = 22 + 3

Number of buckets: 7
Split pointer: 3
Level: 2

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

6, 10, 42

Bucket 3:

11, 19, 35

Bucket 4:

28

Bucket 5:

5

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

10, 42

Bucket 3:

11, 19, 35

Bucket 4:

28

Bucket 5:

5

Bucket 6:

6

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

N = 7 = 22 + 3

Number of buckets: 7
Split pointer: 3
Level: 2

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

10, 42, 74

Bucket 3:

11, 19, 35

Bucket 4:

28, 92

Bucket 5:

5

Bucket 6:

6

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

10, 42

Bucket 3:

11, 19, 35

Bucket 4:

28

Bucket 5:

5

Bucket 6:

6

add 92, 74

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

N = 8 = 23 + 0

Number of buckets: 8
Split pointer: 0
Level: 3

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

10, 42, 74

Bucket 3:

11, 19, 35

Bucket 4:

28, 92

Bucket 5:

5

Bucket 6:

6

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

10, 42, 74

Bucket 3:

11, 19, 35

Bucket 4:

28, 92

Bucket 5:

5

Bucket 6:

6

Bucket 7:

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

N = 8 = 23 + 0

Number of buckets: 8
Split pointer: 0
Level: 3

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

10, 42, 74

Bucket 3:

11, 19, 35

Bucket 4:

28, 92

Bucket 5:

5

Bucket 6:

6

Bucket 7:
add 13, 54

Bucket 0: Bucket1:

 9, 33, 49

Bucket 2:

10, 42, 74

Bucket 3:

11, 19, 35

Bucket 4:

28, 92

Bucket 5:

5, 13

Bucket 6:

6, 54

Bucket 7:

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

N = 9 = 23 + 1

Number of buckets: 9
Split pointer: 1
Level: 3

Bucket 0: Bucket1:

 9, 33, 49

Bucket 2:

10, 42, 74

Bucket 3:

11, 19, 35

Bucket 4:

28, 92

Bucket 5:

5, 13

Bucket 6:

6, 54

Bucket 7: Bucket 8:

40, 8

Bucket 0: Bucket1:

 9, 33, 49

Bucket 2:

10, 42, 74

Bucket 3:

11, 19, 35

Bucket 4:

28, 92

Bucket 5:

5, 13

Bucket 6:

6, 54

Bucket 7:

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

N = 9 = 23 + 1

Number of buckets: 9
Split pointer: 1
Level: 3

Bucket 0: Bucket1:

 9, 33, 49

Bucket 2:

10, 42, 74

Bucket 3:

11, 19, 35

Bucket 4:

28, 92

Bucket 5:

5, 13

Bucket 6:

6, 54

Bucket 7: Bucket 8:

40, 8

add 1, 81

Bucket 0: Bucket1:

 1, 9, 33, 49,
81

Bucket 2:

10, 42, 74

Bucket 3:

11, 19, 35

Bucket 4:

28, 92

Bucket 5:

5, 13

Bucket 6:

6, 54

Bucket 7: Bucket 8:

40, 8

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

N = 10 = 23 + 2

Number of buckets: 10
Split pointer: 2
Level: 3

Bucket 0: Bucket1:

 1, 33, 49, 81

Bucket 2:

10, 42, 74

Bucket 3:

11, 19, 35, 67,
99

Bucket 4:

28, 92

Bucket 5:

5, 13

Bucket 6:

6, 54

Bucket 7:

 39

Bucket 8:

40, 8

Bucket 9:

 9

Bucket 0: Bucket1:

 1, 33, 49, 81

Bucket 2: Bucket 3:

11, 19, 35, 67,
99

Bucket 4:

28, 92

Bucket 5:

5, 13

Bucket 6:

6, 54

Bucket 7:

39

Bucket 8:

40, 8

Bucket 9:

 9

Bucket 10:

 10, 42, 74

Linear Hashing
• Observations:

• Buckets split in fixed order

• 0, 0,1, 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, …, 15,
0, …

• Address calculation is modulo , i.e. the l least
significant bits

• Buckets 0, 1, …, s-1 and 2**l, 2**l+1, … N-1 are
already split, they have on average half the size of
the buckets s, s+1, …, 2**l.

2l

Linear Hashing
• Observations:

• An overflowing bucket is not necessarily split
immediately

• Sometimes, a split leaves all keys in the splitting bucket
or moves them all to the new bucket

• On average, a bucket will have α items in them

