Greedy Algorithms

Thomas Schwarz, SJ

- A given country uses a weird set of coins
 - 1, 3, 5, 8
- How do you make change with the least number of coins?
 - With these coins, it is not so obvious
 - Normally, we can just start out with the largest coin that fits, but not in this case
 - Making change for 15:
 - Use an 8, a 5 and two 1s
 - But three 5s is better

- To solve the change making problem, we can use dynamic programming
- Some notation: v_i value of coin $i, i \in \{1, ..., n\}$
 - Best number of coins for change of *x* is
 - Best number of coins for change of $x v_1$ plus one
 - Best number of coins for change of $x v_2$ plus one
 - ...
 - Best number of coins for change of $x v_n$ plus one

- To organize the calculation
 - Create a tableau
 - For row *i*, column *j*:
 - How many coins to make change for an amount of *i* with coins 1,...,*j*

Example: Coins with values
 1, 3, 5, 8 to make change of
 15

Value	ones	threes	five	eights
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				

- Example: Coins with values
 1, 3, 5, 8 to make change of
 15
- First column is easy

Value	ones	threes	five	eights
1	1			
2	2			
3	3			
4	4			
5	5			
6	6			
7	7			
8	8			
9	9			
10	10			
11	11			
12	12			
13	13			
14	14			
15	15			

- Second column asks how many threes I should use
 - Example for value 10:
 - Can use none
 - Cost is 10
 - Can use one three
 - Cost is 1+7
 - Can use two threes
 - Cost is 2+4
 - Can use three threes
 - Cost is 3+1

Value	ones	threes	five	eights
0	0	0	0	0
1	1			
2	2			
3	3			
4	4			
5	5			
6	6			
7	7			
8	8			
9	9			
10	10	- ???		
11	11			
12	12			
13	13			
14	14			
15	15			

- Second column asks how many threes I should use
 - Formula is

$$\min\{T_{i-v_{j}\nu,j-1} + \nu \mid \nu = 0,1,..., \lfloor \frac{i}{v_{i}} \rfloor\}$$

 $T_{i-v_jv,j-1}$ costs of making change of $i - \nu v_i$ with coins up to j - 1

 $+\nu$ costs of using ν coins of value v_j

Value	ones	threes	five	eights
0	0	0	0	0
1	1			
2	2			
3	3			
4	4			
5	5			
6	6			
7	7			
8	8			
9	9			
10	10	- ???		
11	11			
12	12			
13	13			
14	14			
15	15			

- Our alternatives are:
 - No threes: 10
 - One three: 7+1=8
 - Two threes 4+2=6
 - Three threes 1+3=4

Value	ones	threes	five	eights
0	0	0	0	0
1	1			
2	2			
3	3			
4	4			
5	5			
6	6			
7	7			
8	8			
9	9			
10	10	4		
11	11			
12	12			
13	13			
14	14			
15	15			

• Filling in the other values

Value	ones	threes	five	eights
0	0	0	0	0
1	1	1		
2	2	2		
3	3	1		
4	4	2		
5	5	3		
6	6	2		
7	7	3		
8	8	4		
9	9	3		
10	10	4		
11	11	5		
12	12	4		
13	13	5		
14	14	6		
15	15	5		

- Now on to five
 - The first values are simple since we cannot use a five

Value	ones	threes	five	eights
0	0	0	0	0
1	1	1		
2	2	2		
3	3	1		
4	4	2		
5	5	3		
6	6	2		
7	7	3		
8	8	4		
9	9	3		
10	10	4		
11	11	5		
12	12	4		
13	13	5		
14	14	6		
15	15	5		

- Now on to five
 - The first values are simple since we cannot use a five

Value	ones	threes	five	eights
0	0	0	0	0
1	1	1	1	
2	2	2	2	
3	3	1	1	
4	4	2	2	
5	5	3		
6	6	2		
7	7	3		
8	8	4		
9	9	3		
10	10	4		
11	11	5		
12	12	4		
13	13	5		
14	14	6		
15	15	5		

- Now on to five
 - At value 5:
 - Can use a five
 - Can not use a five:
 - 3 coins according to previous column

Value	ones	threes	five	eights
0	0	0	0	0
1	1	1	1	
2	2	2	2	
3	3	1	1	
4	4	2	2	
5	5	3	1	
6	6	2		
7	7	3		
8	8	4		
9	9	3		
10	10	4		
11	11	5		
12	12	4		
13	13	5		
14	14	6		
15	15	5		

- Now on to five
 - At value 6:
 - Can use 5
 - Costs: 1+1
 - Cannot use 5
 - Costs 2

Value	ones	threes	five	eights
0	0	0	0	0
1	1	1	1	
2	2	2	2	
3	3	1	1	
4	4	2	2	
5	5	3	1	
6	6	2	2	
7	7	3		
8	8	4		
9	9	3		
10	10	4		
11	11	5		
12	12	4		
13	13	5		
14	14	6		
15	15	5		

- Now on to five
 - At value 8:
 - Can use 5
 - Costs: 1+1
 - Cannot use 5
 - Costs 4

Value	ones	threes	five	eights
0	0	0	0	0
1	1	1	1	
2	2	2	2	
3	3	1	1	
4	4	2	2	
5	5	3	1	
6	6	2	2	
7	7	3	3	
8	8	4	2	
9	9	3		
10	10	4		
11	11	5		
12	12	4		
13	13	5		
14	14	6		
15	15	5		

- Now on to five
 - At value 9:
 - Can use 5
 - Costs: 2+1
 - Cannot use 5
 - Costs 3

Value	ones	threes	five	eights
0	0	0	0	0
1	1	1	1	
2	2	2	2	
3	3	1	1	
4	4	(2)	2	
5	5	3	1	
6	6	2	2	
7	7	3	3	
8	8	4	2	
9	9	3	3	
10	10	4		
11	11	5		
12	12	4		
13	13	5		
14	14	6		
15	15	5		

- Now on to five
 - At value 10:
 - Can use two 5s
 - Can use one 5
 - Costs: 3+1
 - Can use no 5s
 - Costs 3

Value	ones	threes	five	eights
0	0	0	0	0
1	1	1	1	
2	2	2	2	
3	3	1	1	
4	4	2	2	
5	5	3	1	
6	6	2	2	
7	7	3	3	
8	8	4	2	
9	9	3	3	
10	10	4	2	
11	11	5		
12	12	4		
13	13	5		
14	14	6		
15	15	5		

- Now on to five
 - At value 11:
 - Can use two 5s
 - Costs 2+1
 - Can use one 5
 - Costs: 2+1
 - Can use no 5s
 - Costs 5

Value	ones	threes	five	eights
0	0	0	0	0
1	1	1	1	
2	2	2	2	
3	3	1	1	
4	4	2	2	
5	5	3	1	
6	6	2	2	
7	7	3	3	
8	8	4	2	
9	9	3	3	
10	10	4	2	
11	11	5	3	
12	12	4		
13	13	5		
14	14	6		
15	15	5		

- Now on to five
 - At value 12:
 - Can use two 5s
 - Costs 2+2
 - Can use one 5
 - Costs: 3+1
 - Can use no 5s
 - Costs 4

Value	ones	threes	five	eights
0	0	0	0	0
1	1	1	1	
2	2	2	2	
3	3	1	1	
4	4	2	2	
5	5	3	1	
6	6	2	2	
7	7	3	3	
8	8	4	2	
9	9	3	3	
10	10	4	2	
11	11	5	3	
12	12	4	4	
13	13	5		
14	14	6		
15	15	5		

- Now on to five
 - At value 13:
 - Can use two 5s
 - Costs 2+1
 - Can use one 5
 - Costs: 4+1
 - Can use no 5s
 - Costs 5

Value	ones	threes	five	eights
0	0	0	0	0
1	1	1	1	
2	2	2	2	
3	3	1	1	
4	4	2	2	
5	5	3	1	
6	6	2	2	
7	7	3	3	
8	8	4	2	
9	9	3	3	
10	10	4	2	
11	11	5	3	
12	12	4	4	
13	13	5	3	
14	14	6		
15	15	5		

- Now on to five
 - At value 14:
 - Can use two 5s
 - Costs 2+2
 - Can use one 5
 - Costs: 3+1
 - Can use no 5s
 - Costs 6

Value	ones	threes	five	eights
0	0	0	0	0
1	1	1	1	
2	2	2	2	
3	3	1	1	
4	4	(2)	2	
5	5	3	1	
6	6	2	2	
7	7	3	3	
8	8	4	2	
9	9	3	3	
10	10	4	2	
11	11	5	3	
12	12	4	4	
13	13	5	3	
14	14	6	4	
15	15	5		

- Now on to five
 - At value 15:
 - Can use three 5s
 - Costs 3
 - Can use two 5s
 - Costs 2+3
 - Can use one 5
 - Costs: 4+1
 - Can use no 5s
 - Costs 5

Value	ones	threes	five	eights
0	0	0	0	0
1	1	1	1	
2	2	2	2	
3	3	1	1	
4	4	2	2	
5	5	3	1	
6	6	2	2	
7	7	3	3	
8	8	4	2	
9	9	3	3	
10	10	4	2	
11	11	5	3	
12	12	4	4	
13	13	5	3	
14	14	6	3	
15	15	$\overline{(5)}$	З	

- Now on to eights
 - At value 15:
 - Can use one eight
 - Costs 1+3
 - Can use no eights
 - Costs: 3

Value	ones	threes	five	eights
0	0	0	0	0
1	1	1	1	
2	2	2	2	
3	3	1	1	
4	4	2	2	
5	5	3	1	
6	6	2	2	
7	7	3	3	
8	8	4	2	
9	9	3	3	
10	10	4	2	
11	11	5	3	
12	12	4	4	
13	13	5	3	
14	14	6	3	
15	15	5	3	3

- Alternative: Memoization and Recursion
 - Instead of using a tableau
 - (or rather two, one to remember the best choice)
 - Can use recursion and memoization
 - Simplest form:
 - What was the last coin that was added
 - It has to be one of the coins: e.g. 1, 3, 5, or 8
 - The costs are the cost of making change for the amount minus the value of the coin plus one for the coin itself

- Alternative: Memoization and Recursion
 - Recursion

 $c(n) = \min\{c(n - v_i) + 1\}$

- where the minimum is taken over all different coin values
- We also write the coin which causes the minimum to be selected

- For memoization in Python:
 - have a global dictionary for the costs and the best choice of coin (last_coin)
 - Also, add the values of the coins in a list

```
last_coin = {0:0}
costs = {0:0}
values = [1,3,5,7,8]
```

• Here is very simple Python code

```
def getChange(n):
    if n in costs:
        return costs[n]
    best = 100000
    bestcoin = 0
    for x in range(len(values)):
        if values[x] > n:
            break
        alternativeCost = getChange(n-values[x])+1
        if alternativeCost < best:
            best = alternativeCost
            bestcoin = values[x]
    costs[n] = best
    last coin[n] = bestcoin
    return best
```

 And here is the output Amount to make change for Number of coins needed Last coin used • Example: • For 20, use a 5, left 15 • For 15, use a 7, left 8 • For 8, use 8

- But we do not have this problem with normal coin sets
 - US\$-cents: 1, 5, 10, 25, 100
 - Euro-cents: 1, 5, 10, 20, 50, 100, 200

- Cashier's Algorithm
 - Always select the largest coin smaller or equal the current amount
 - Will not always work
 - Another example: US Postage Stamps before forever
 - 1, 5, 25, 32, 100
 - Make change for 121
 - Cashier's algorithm: 100+5+5+5+1
 - Better choice 32+32+32+25

- But sometimes the Cashier's Algorithm is the best
 - Assume that we have coins of 1, 5, 10, 20, and 50
 - Proof by induction that the cashier's algorithm always give the best change
 - Represent the change as an array
 - Coefficient *i* of array: number of *i*-th coins
 - Example:

• one way of making change for 213

- Proof:
- Assume $C = [c_1, c_5, c_{10}, c_{20}, c_{50}]$ is the result of the cashier's algorithm for an amount of

$$c_1 + c_5 \cdot 5 + c_{10} \cdot 10 + c_{20} \cdot 20 + c_{50} \cdot 50$$

• Assume $A = [a_1, a_5, a_{10}, a_{20}, a_{50}]$ is an alternative with less coins for the same amount

$$a_1 + a_5 \cdot 5 + a_{10} \cdot 10 + a_{20} \cdot 20 + a_{50} \cdot 50$$

but

$$a_1 + a_5 + a_{10} + a_{20} + a_{50} < c_1 + c_5 + c_{10} + c_{20} + c_{50}$$

- Proof:
- Want to show that A = C.

- Proof:
 - Lemma 1: An optimal solutions has not more than four pennies
 - Otherwise replace with a 5 cent piece
 - Lemma 2: An optimal solution has not more than one 10 cent piece
 - Otherwise replace with a 20 cent piece
 - Lemma 3: An optimal solution cannot have two twenty cent pieces and one 10 cent piece
 - Otherwise replace with a 50 cent piece

- Proof:
 - Lemma 5: Maximum number of pennies in an optimal solution is four
 - Follows from Lemma 1
 - Lemma 6: If the optimal solution has only pennies and five cents, then the amount is at most nine
 - Follows from Lemma 2 and Lemma 5

- Lemma 7: The maximum amount for an optimal solution with only pennies, 5 cent and 10 cent pieces is 19
- Lemma 8: The maximum amount for an optimal solution with only 1 cent, 5 cent, 10 cent, and 20 cent pieces is 49

- Proof:
 - Assume that the number of 50 cent coins in A and C differ.
 - Because of how C is defined, the number of 50 cent coins in A has to be lower $a_{50} < c_{50}$.
 - However, the difference needs to be made up with coins of smaller value
 - But an optimal solution cannot have more than 49 cents in smaller coins
 - Contradiction

• Proof:

Et cetera

- So, the number of 50 cent coins does not differ
 - If there are x 50 cent coins, then look at the best solution for amount-x coins.
 - *C* and *A* with the 50 cent coins removed are still two different solutions for the same amount
- Now apply the same argument to the 20 cent coins.

- We call the cashier's algorithm a greedy algorithm:
 - We solve the problem by going to a smaller problem
 - E.g. Making change for 134 cents.
 - Lay out 50 cents
 - Making change for 84 cents.
 - ...
 - At each step, we select something optimal

Greedy Algorithms

- Many algorithms run from stage to stage
 - At each stage, they make a decision based on the information available
- A Greedy algorithm makes decisions
 - At each stage, using locally available information, the greedy algorithm makes an optimal choice

- Sometimes, greedy algorithms give an overall optimal solution
- Sometimes, greedy algorithms will not result in an optimal solution but often in one good enough

Divisible Items Knapsack Problem

- Given a set of items S
 - Each item has a weight w(x)
 - Each item has a value v(x)
- Select a subset $M \subset S$
 - Constraint:

$$\sum_{x \in M} w(x) < W$$

• Objective Function:

$$\sum_{x \in M} v(x) \longrightarrow \max$$

Divisible Items Knapsack Problem

- Order all items by impact
 - impact(x) = $\frac{v(x)}{w(x)}$
- In order of impact (highest first), ask whether you want to include the item
 - And you include it if the sum of the weights of the items already selected is smaller than ${\cal W}$

- Set of activities $S = \{a_1, a_2, ..., a_n\}$
 - Each activity has a start time and a finish time
 - $0 \le s_i < f_i < \infty$
 - Each activity needs to use your facility
 - Only one activity at a time
 - Make the rental agreements that maximize the number of rentals

- Two activities a_i and a_j are compatible iff
 - $[s_i, f_i) \cap [s_j, f_j) = \emptyset$

• This means that activity i < j finishes before activity j

• A compatible set is $\{A_1, A_5, A_8, A_{10}\}$

• Another compatible set is $\{A_3, A_9\}$

- Optimal rental with a dynamic programming algorithm
 - Subproblems: Define S_{ik} to be the set of activities that start after a_i finishes and finish before a_k starts

i	1	2	3	4	5	6	7	8	9	10
si	1	3	0	2	6	5	6	15	18	19
fi	6	7	9	12	13	15	18	19	20	21

$$S_{1,8} = \{a_5\}$$

- We want to find an optimal rental plan for S_{ik}
 - Assume that there is an optimal solution that contains activity $a_j \in S_{i,k}$
 - By selecting a_j , we need to decide what to do with the time before a_j starts and after a_j finishes
 - These sets are S_{ij} and S_{jk}

- Assume that a_j is part of an optimal solution $A_{i,k}$ for $S_{i,k}$
 - Then $A_{i,k}$ is divided into the ones that end before a_j and the ones that start after a_j

•
$$A_{i,j} = A_{i,k} \cap S_{i,k}$$
 $A_{j,k} = A_{i,k} \cap S_{j,k}$

$$A_{i,k} = A_{i,j} \cup \{a_j\} \cup A_{j,k}$$

- Clearly, $A_{i,j}$ is an optimal solution for $S_{i,j}$
- $A_{j,k}$ is an optimal solution for $S_{j,k}$
- For if not, we could construct a better solution for $S_{i,k}$

- We can therefore solve recursively the problem for $S_{i,k}$ by looking at all possible activities for a_i
 - Define C[i, k] = Max number of compatible activities in $S_{i,k}$
 - Then:

 $C[i,k] = \max(0, \max(C[i,j] + C[j,k] + 1 | a_j \in S_{i,k}))$

• The 0 is necessary because there might be no activity in $S_{i,k}$

The recursion leads to a nice dynamic programming problem

$$C[i,k] = \max(0, \max(C[i,j] + C[j,k] + 1 | a_j \in S_{i,k}))$$

• But can we do better?

- Start out with the initial problem
 - Select the activity that finishes first
 - this would be a_1
 - This leaves most space for all other activities
 - Call S_1 the set of activities compatible with a_1
 - These are those starting after a_1
 - Similarly, call S_k the set of activities starting after a_k

- Theorem: For any non-empty problem S_k let a_m be the activity with the smallest end time. Then a_m is contained in an optimal solution
- Proof:
 - Let A_k be a solution
 - i.e. the maximum sized compatible subset in S_k
 - Let $a_1 \in A_k$ be the activity with earliest finish time
 - If $a_m = a_1$ then we are done

- Theorem: For any non-empty problem S_k let a_m be the activity with the smallest end time. Then a_m is contained in an optimal solution
- Proof:
 - Otherwise replace a_1 with a_m in A_k

•
$$A'_k = A_k - \{a_1\} \cup \{a_m\}$$

- Since a_m is the first to finish, this is a set of compatible activities
- Therefore, there exists an optimal solution with a_m

- Result of the Theorem:
 - We can find an optimal solution (but not necessarily all optimal solutions) by always picking the first one to finish.

• Example

i	1	2	3	4	5	6	7	8	9	10
si	1	3	0	2	6	5	6	15	18	19
fi	6	7	9	12	13	15	18	19	20	21

- Select a_1
- Exclude a_2 , a_3 , and a_4 as incompatible
- Choose a_5 , a_8 , and a_{10} for the complete solution

Greedy Algorithms

- Greedy algorithms
 - Determine the optimal substructure
 - Develop a recursive solution
 - Show that making the greedy choice is best
 - Show that making the greedy choice leads to a similar subproblem
 - Obtain a recursive algorithm
 - Convert the recursive algorithm to an iterative algorithm