
Correctness of
Algorithms

Thomas Schwarz, SJ

Introduction
• Correctness is a fundamental part of the goodness of an

algorithm

• Correctness can be:

• Deduced from extensive testing of implementations

• But you are never sure that there are no errors

• Proven mathematically

• By proof systems

• By human beings

Analysis of Euclidean
Algorithm

Algorithms

Thomas Schwarz, SJ

Greatest Common Divisor
• Given two numbers :

• divides

• Divisors are smaller than the dividend

•

• is a common divisor of and iff

•

• Always exists because the set is finite

• Any finite subset of the natural numbers has a maximum

a, b ∈ ℕ

a b a ∣ b :⟺ ∃x ∈ ℕ : b = ax

a ∣ b ⟹ a ≤ b

r a b r ∣ a ∧ r ∣ b

gcd(a, b) = max{r : r ∣ a ∧ r ∣ b}

Greatest Common Divisor
• Lemma 1: For all numbers :

• Proof: The set of common divisors does not depend on the
order in which a and b are given:

• because the
logical and operator is commutative

Hence:

a, b ∈ ℕ
gcd(a, b) = gcd(b, a)

{r : r ∣ a ∧ r ∣ b} = {r : r ∣ b ∧ r ∣ a}

gcd(a, b) = max{r : r ∣ a ∧ r ∣ b}

= max{r : r ∣ b ∧ r ∣ a}

= gcd(b, a)

Greatest Common Divisor
• Lemma 2: If and then .

• Proof:

• is the largest divisor of itself.

• is also a divisor of by assumption

• Hence is the largest element in the set of common
divisors .

• This means that

a ∈ ℕ a ∣ b gcd(a, b) = a

a

a b

a
{r : r ∣ a ∧ r ∣ b}

a = max{r : r ∣ a ∧ r ∣ b} = gcd(a, b)

Greatest Common Divisor
• Lemma 3: If then

• Proof:

•

• We show that

• Assume that is in the left side. We want to show that it is also in
the right side. For this we need to show that also divides c.

• What do we know: There exists such that

• because divides

• because divides

•

a ≡ c (mod b) gcd(a, b) = gcd(c, b)

a ≡ c (mod b) ⟺ ∃r, s, t ∈ ℕ0 : a = rb + t ∧ c = sb + t ∧ 0 ≤ t < b

{r : r ∣ a ∧ r ∣ b} = {r : r ∣ c ∧ r ∣ b}

d ∈ ℕ
d

x, y ∈ ℕ0

b = xd d b

a = yd d a

a = rb + t, c = sb + t,0 ≤ t < b

Greatest Common Divisor
• Proof (continued)

• c = c� a+ a

= ((sb+ t)� (rb+ t)) + a

= (s� r)b+ a

= (s� r)xd+ yd

= ((s� r)x+ y)d

<latexit sha1_base64="b9Xg+Gw8lpuU4qZbUwSD4rwtZhA=">AAACRnicbZBLSwMxFIXv1Fetr6pLN8FiaSktM1LQjVB047KCfUA7lEwmbYOZB0lGHEp/nRvX7vwJblwo4tZMW7S2Xgg5+c69JDlOyJlUpvlipFZW19Y30puZre2d3b3s/kFTBpEgtEECHoi2gyXlzKcNxRSn7VBQ7Dmctpy7q8Rv3VMhWeDfqjiktocHPuszgpVGvaxNUP4ij0gZoxLCqNvN6GOhIJ2SKpYLItmKqPRjyLIoOvOdCXhwNYnd3+GEleIicnvZnFkxJ4WWhTUTOZhVvZd97roBiTzqK8KxlB3LDJU9wkIxwuk4040kDTG5wwPa0dLHHpX2aBLDGJ1o4qJ+IPTyFZrQ+YkR9qSMPUd3elgN5aKXwP+8TqT65/aI+WGkqE+mF/UjjlSAkkyRywQlisdaYCKYfisiQywwUTr5jA7BWvzysmieVqxqpXpTzdUuZ3Gk4QiOoQAWnEENrqEODSDwCK/wDh/Gk/FmfBpf09aUMZs5hD+Vgm93B6YJ</latexit>

Greatest Common Divisor
• Proof: (cont)

• Now we want to show that all elements on the right
side of are in
the left side.

• However, since our assumptions are symmetric in
and , the same proof applies.

{r : r ∣ a ∧ r ∣ b} = {r : r ∣ c ∧ r ∣ b}

a
c

Euclidean Algorithm
• Informal Version:

• To compute put the larger number of and on the left

• Then divide by with remainder ()

• If , then and .

• Otherwise:

• Notice that .

• Therefore by the Lemma

• Continue until the remainder becomes 0

gcd(a, b) a b

a b r a = bx + r

r = 0 b ∣ a gcd(a, b) = b

r ≡ a (mod b)

gcd(a, b) = gcd(r, b) = gcd(b, r)

Euclidean Algorithm
• gcd(1043, 4321)

• = gcd(4321, 1043)

• = gcd(1043, 149)

• = 149 because 1043 % 149 = 0.

• There is an interesting extension:

• 4321=4*1043+149, ergo 149 = 4321-4*1043, a linear
combination of 4321 and 1043

Euclidean Algorithm
gcd(198, 168)

= gcd(168, 30)

= gcd(30, 18)

= gcd(18,12)

= gcd(12,6)

= 6

• 198-168=30

• 18 =168 - 5*30
=168-5(198-168)=6*168-5*198

• 12 = 30 - 18 = 198-168-6*168+5*198 =
6*198-7*168

• 6 = 18-12 = -5*198+6*168-6*198+7*168 =
-11*198 + 13*168

• GCD is a linear combination of the two
parameters!

Euclidean Algorithm
• Pseudo-code

def gcd(a, b):
 if b==0:
 return a
 else:
 return gcd(b, a%b)

Euclidean Algorithm
• How do we prove the correctness of an algorithm?

• Especially if it contains a loop

• Usually, need to use induction

• Sometimes using a loop invariant

• In this case: gcd(var1,var2) does not change
between between calls

• That is Lemma 3!

• End if the algorithm ever ends, it prints out the
correct value by Lemma 1.

gcd(198, 168)
= gcd(168, 30)
= gcd(30, 18)
= gcd(18,12)
= gcd(12,6)
= gcd(6,0)

Euclidean Algorithm
• How do we prove the correctness of the algorithm?

• It is possible that an algorithm will never stop

• (on some inputs, or on all inputs)

• In our case, the smaller of the variables becomes
strictly smaller

• with the exception of the first step

• Thus, we will run out of variables for our recursive calls
sooner or later

• Algorithm will eventually return the correct number

Euclidean Algorithm
• Performance

• Obviously, proportional to the number of recursive calls

• Given two random inputs:

• Can stop in one iteration

• If second variable divides the first

• Or can stop after many

• In a case like this: look for the worst case scenario

Euclidean Algorithm
• Theorem: If gcd(a,b) makes N recursive calls and a > b

then and a ≥ fN+2 b ≥ fN+1

Euclidean Algorithm
• Proof:

• By induction

• Base case: :

• In this case , hence

• In this case , so

N = 1

b ≠ 0 b ≥ 1 = f1
a > b a > b = 1 ⟹ a ≥ 2 = f2

def gcd(a, b):
 if b==0:
 return a
 else:
 return gcd(b, a%b)

Euclidean Algorithm
• Induction step

• Induction hypothesis:

• If gcd has recursive calls then and

• To show:

• If gcd has recursive calls, then
and

N a ≥ fN+2
b ≥ fN+1

N + 1 a ≥ fN+3
b ≥ fN+2

def gcd(a, b):
 if b==0:
 return a
 else:
 return gcd(b, a%b)

Euclidean Algorithm
• Assume that gcd(a,b) makes N+1 calls.

• The first step calls gcd(b,a%b)

• This call calls the function recursively N times

• Thus, by Induction Hypothesis

• and

• By division with reminder with

• Because we have .

• Therefore: .

• We already know that

b ≥ fN+2 a % b ≥ fN+1

a = rb + a % b 0 ≤ a % b < b

a > b r ≥ 1

a ≥ b + a % b ≥ fN+2 + fN+1 ≥ fN+3

b ≥ fN+2

def gcd(a, b):
 if b==0:
 return a
 else:
 return gcd(b, a%b)

Euclidean Algorithm
• Can find a closed form of Fibonacci

•

•

• This implies that and

Φ =
1 + 5

2
≈ 1.68

b ≥ fN+2 ≥ ΦN

logΦ(b) ≥ N − 1 N = O(log b)

def gcd(a, b):
 if b==0:
 return a
 else:
 return gcd(b, a%b)

Loop Invariants as a
Proof Technique

Loop Invariants
• Recursion usually demands induction proofs to assert

properties of an algorithm

• For loops, use loop invariant:

• A property that is true before the loop starts

• A property that remains true after each loop iteration

• And is therefore true after the loop terminates

Loop Invariants
• Working with loop invariants:

• Need to come up with a loop invariant

• Prove that it is true before the loop starts (induction
base)

• Prove that it remains true after each iteration of the
loop

Loop Invariants
• Trivial Example:

• Small C-program

extern int c;
int x = c, y = 0;
while (x>=0):
 x--;
 y++;
print(y)

Loop Invariants
• Step 1: Guessing a loop invariant

• Needs to involve x, y, c

• x + y = c

extern int c;
int x = c, y = 0;
while (x>=0):
 x--;
 y++;
print(y)

Loop Invariants
• Step 2:

• Show that it is true before the loop starts

• Simple: before the loop starts, we have
therefore

x = c, y = 0
x + y = c

Loop Invariants
• Step 3: Show that the truth does not change after one

iteration

• Induction step: Assume before the loop
iteration

• After the iteration, we have , .

• This implies

•

xb + yb = c

xa = xb − 1 ya = yb + 1

xa + ya = (xb − 1) + (yb + 1) = xb + yb − 1 + 1 = xb + yb = c

Loop Invariants
• Step 4: Evaluate with the loop invariant

• When the loop is terminated, .

• (Question: why do we now that the loop terminates?)

• Therefore, the value of is

• Thus, the function prints out the value of .

x = 0

y
y = x + y − x = c − 0 = c

c

Examples

Selection Sort
• Given an array, sort it

• Idea:

• Find the minimum of the elements in the array

• Swap the first element with the minimum

• Now find the minimum of the remaining elements

• Swap the second element with the minimum

• etc.

Selection Sort
• Python = Pseudo Code

def selection(array):
 for i in range(0, len(array)):
 value = array[i]
 index = i
 for j in range(i, len(array)):
 if array[j] < value:
 index = j
 value = array[j]
 array[i], array[index] = array[index], array[i]

Selection Sort
• Insert two loop invariants

def selection(array):
 for i in range(0, len(array)):
 value = array[i]
 index = i
 for j in range(i, len(array)):
 if array[j] < value:
 index = j
 value = array[j]
 ## value and index are min(array) and argmin(array)
 array[i], array[index] = array[index], array[i]
 ## array[0:i] is ordered

Selection Sort
• From these two invariants, it follows that the array is well

sorted

Quicksort

Quicksort

Quicksort

Quicksort

Quicksort

Quicksort

