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Introduction
• Correctness is a fundamental part of the goodness of an 

algorithm


• Correctness can be:


• Deduced from extensive testing of implementations


• But you are never sure that there are no errors


• Proven mathematically


• By proof systems


• By human beings
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Greatest Common Divisor
• Given two numbers :


•  divides        


• Divisors are smaller than the dividend


• 


•  is a common divisor of  and  iff  


• 


• Always exists because the set is finite


• Any finite subset of the natural numbers has a maximum

a, b ∈ ℕ

a b a ∣ b :⟺ ∃x ∈ ℕ : b = ax

a ∣ b ⟹ a ≤ b

r a b r ∣ a ∧ r ∣ b

gcd(a, b) = max{r : r ∣ a ∧ r ∣ b}



Greatest Common Divisor
• Lemma 1:   For all numbers :  




• Proof: The set of common divisors does not depend on the 
order in which a and b are given:


•  because the 
logical and operator is commutative


Hence:  





a, b ∈ ℕ
gcd(a, b) = gcd(b, a)

{r : r ∣ a ∧ r ∣ b} = {r : r ∣ b ∧ r ∣ a}

gcd(a, b) = max{r : r ∣ a ∧ r ∣ b}

= max{r : r ∣ b ∧ r ∣ a}

= gcd(b, a)



Greatest Common Divisor
• Lemma 2:  If  and  then .


• Proof:  


•  is the largest divisor of itself.


•  is also a divisor of  by assumption


• Hence  is the largest element in the set of common 
divisors .


• This means that 

a ∈ ℕ a ∣ b gcd(a, b) = a

a

a b

a
{r : r ∣ a ∧ r ∣ b}

a = max{r : r ∣ a ∧ r ∣ b} = gcd(a, b)



Greatest Common Divisor
• Lemma 3: If   then 


• Proof:


•   


• We show that 


• Assume that  is in the left side.  We want to show that it is also in 
the right side. For this we need to show that  also divides c.


• What do we know: There exists  such that 


•           because  divides 


•           because  divides 


•

a ≡ c (mod b) gcd(a, b) = gcd(c, b)

a ≡ c (mod b) ⟺ ∃r, s, t ∈ ℕ0 : a = rb + t ∧ c = sb + t ∧ 0 ≤ t < b

{r : r ∣ a ∧ r ∣ b} = {r : r ∣ c ∧ r ∣ b}

d ∈ ℕ
d

x, y ∈ ℕ0

b = xd d b

a = yd d a

a = rb + t, c = sb + t,0 ≤ t < b



Greatest Common Divisor
• Proof (continued)


• c = c� a+ a

= ((sb+ t)� (rb+ t)) + a

= (s� r)b+ a

= (s� r)xd+ yd

= ((s� r)x+ y)d

<latexit sha1_base64="b9Xg+Gw8lpuU4qZbUwSD4rwtZhA=">AAACRnicbZBLSwMxFIXv1Fetr6pLN8FiaSktM1LQjVB047KCfUA7lEwmbYOZB0lGHEp/nRvX7vwJblwo4tZMW7S2Xgg5+c69JDlOyJlUpvlipFZW19Y30puZre2d3b3s/kFTBpEgtEECHoi2gyXlzKcNxRSn7VBQ7Dmctpy7q8Rv3VMhWeDfqjiktocHPuszgpVGvaxNUP4ij0gZoxLCqNvN6GOhIJ2SKpYLItmKqPRjyLIoOvOdCXhwNYnd3+GEleIicnvZnFkxJ4WWhTUTOZhVvZd97roBiTzqK8KxlB3LDJU9wkIxwuk4040kDTG5wwPa0dLHHpX2aBLDGJ1o4qJ+IPTyFZrQ+YkR9qSMPUd3elgN5aKXwP+8TqT65/aI+WGkqE+mF/UjjlSAkkyRywQlisdaYCKYfisiQywwUTr5jA7BWvzysmieVqxqpXpTzdUuZ3Gk4QiOoQAWnEENrqEODSDwCK/wDh/Gk/FmfBpf09aUMZs5hD+Vgm93B6YJ</latexit>



Greatest Common Divisor
• Proof: (cont)


• Now we want to show that all elements on the right 
side of  are in 
the left side.


• However, since our assumptions are symmetric in  
and , the same proof applies.

{r : r ∣ a ∧ r ∣ b} = {r : r ∣ c ∧ r ∣ b}

a
c



Euclidean Algorithm
• Informal Version:


• To compute  put the larger number of  and  on the left


• Then divide  by  with remainder   ( )


• If , then  and .


• Otherwise: 


• Notice that .


• Therefore  by the Lemma


• Continue until the remainder becomes 0

gcd(a, b) a b

a b r a = bx + r

r = 0 b ∣ a gcd(a, b) = b

r ≡ a (mod b)

gcd(a, b) = gcd(r, b) = gcd(b, r)



Euclidean Algorithm
• gcd(1043, 4321)


• = gcd(4321, 1043)


• = gcd(1043, 149)


• = 149 because 1043 % 149 = 0.


• There is an interesting extension:


• 4321=4*1043+149, ergo 149 = 4321-4*1043, a linear 
combination of 4321 and 1043



Euclidean Algorithm
gcd(198, 168) 


= gcd(168, 30)


= gcd(30, 18)


= gcd(18,12)


= gcd(12,6)


= 6

• 198-168=30


• 18 =168 - 5*30 
=168-5(198-168)=6*168-5*198


• 12 = 30 - 18 = 198-168-6*168+5*198 = 
6*198-7*168


• 6 = 18-12 = -5*198+6*168-6*198+7*168 = 
-11*198 + 13*168


• GCD is a linear combination of the two 
parameters!



Euclidean Algorithm
• Pseudo-code

def gcd(a, b): 
    if b==0: 
        return a 
    else: 
        return gcd(b, a%b)



Euclidean Algorithm
• How do we prove the correctness of an algorithm?


• Especially if it contains a loop


• Usually, need to use induction


• Sometimes using a loop invariant


• In this case:  gcd(var1,var2) does not change 
between between calls


• That is Lemma 3!


• End if the algorithm ever ends, it prints out the 
correct value by Lemma 1.

gcd(198, 168)  
= gcd(168, 30) 
= gcd(30, 18) 
= gcd(18,12) 
= gcd(12,6) 
= gcd(6,0)



Euclidean Algorithm
• How do we prove the correctness of the algorithm?


• It is possible that an algorithm will never stop


• (on some inputs, or on all inputs)


• In our case, the smaller of the variables becomes 
strictly smaller


• with the exception of the first step


• Thus, we will run out of variables for our recursive calls 
sooner or later


• Algorithm will eventually return the correct number



Euclidean Algorithm
• Performance


• Obviously, proportional to the number of recursive calls


• Given two random inputs:


• Can stop in one iteration


• If second variable divides the first


• Or can stop after many


• In a case like this:  look for the worst case scenario



Euclidean Algorithm
• Theorem:  If gcd(a,b) makes N recursive calls and a > b 

then  and a ≥ fN+2 b ≥ fN+1



Euclidean Algorithm
• Proof:


• By induction


• Base case:  :


• In this case , hence 


• In this case , so 

N = 1

b ≠ 0 b ≥ 1 = f1
a > b a > b = 1 ⟹ a ≥ 2 = f2

def gcd(a, b): 
    if b==0: 
        return a 
    else: 
        return gcd(b, a%b)



Euclidean Algorithm
• Induction step


• Induction hypothesis:


• If gcd has  recursive calls then  and 



• To show:


• If gcd has  recursive calls, then  
and 

N a ≥ fN+2
b ≥ fN+1

N + 1 a ≥ fN+3
b ≥ fN+2

def gcd(a, b): 
    if b==0: 
        return a 
    else: 
        return gcd(b, a%b)



Euclidean Algorithm
• Assume that gcd(a,b) makes N+1 calls.


• The first step calls gcd(b,a%b)


• This call calls the function recursively N times


• Thus, by Induction Hypothesis


•  and 


• By division with reminder  with 


• Because  we have .


• Therefore: .


• We already know that 

b ≥ fN+2 a % b ≥ fN+1

a = rb + a % b 0 ≤ a % b < b

a > b r ≥ 1

a ≥ b + a % b ≥ fN+2 + fN+1 ≥ fN+3

b ≥ fN+2

def gcd(a, b): 
    if b==0: 
        return a 
    else: 
        return gcd(b, a%b)



Euclidean Algorithm
• Can find a closed form of Fibonacci


• 


•  


• This implies that  and 

Φ =
1 + 5

2
≈ 1.68

b ≥ fN+2 ≥ ΦN

logΦ(b) ≥ N − 1 N = O(log b)

def gcd(a, b): 
    if b==0: 
        return a 
    else: 
        return gcd(b, a%b)



Loop Invariants as a 
Proof Technique



Loop Invariants
• Recursion usually demands induction proofs to assert 

properties of an algorithm


• For loops, use loop invariant:


• A property that is true before the loop starts


• A property that remains true after each loop iteration


• And is therefore true after the loop terminates



Loop Invariants
• Working with loop invariants:


• Need to come up with a loop invariant


• Prove that it is true before the loop starts (induction 
base)


• Prove that it remains true after each iteration of the 
loop



Loop Invariants
• Trivial Example:


• Small C-program

extern int c; 
int x = c, y = 0; 
while (x>=0): 
   x--; 
   y++; 
print(y)



Loop Invariants
• Step 1: Guessing a loop invariant


• Needs to involve x, y, c


• x + y = c

extern int c; 
int x = c, y = 0; 
while (x>=0): 
   x--; 
   y++; 
print(y)



Loop Invariants
• Step 2:


• Show that it is true before the loop starts


• Simple:  before the loop starts, we have  
therefore 

x = c, y = 0
x + y = c



Loop Invariants
• Step 3:  Show that the truth does not change after one 

iteration


• Induction step:  Assume  before the loop 
iteration


• After the iteration, we have , .


• This implies 


•

xb + yb = c

xa = xb − 1 ya = yb + 1

xa + ya = (xb − 1) + (yb + 1) = xb + yb − 1 + 1 = xb + yb = c



Loop Invariants
• Step 4:  Evaluate with the loop invariant


• When the loop is terminated, .  


• (Question: why do we now that the loop terminates?)


• Therefore, the value of  is 



• Thus, the function prints out the value of .

x = 0

y
y = x + y − x = c − 0 = c

c



Examples



Selection Sort
• Given an array, sort it


• Idea:


• Find the minimum of the elements in the array


• Swap the first element with the minimum


• Now find the minimum of the remaining elements


• Swap the second element with the minimum


• etc.



Selection Sort
• Python = Pseudo Code

def selection(array): 
    for i in range(0, len(array)): 
        value = array[i] 
        index = i 
        for j in range(i, len(array)): 
            if array[j] < value: 
                index = j 
                value = array[j] 
        array[i], array[index] = array[index], array[i]



Selection Sort
• Insert two loop invariants

def selection(array): 
    for i in range(0, len(array)): 
        value = array[i] 
        index = i 
        for j in range(i, len(array)): 
            if array[j] < value: 
                index = j 
                value = array[j] 
       ## value and index are min(array) and argmin(array) 
        array[i], array[index] = array[index], array[i] 
    ## array[0:i] is ordered



Selection Sort
• From these two invariants, it follows that the array is well 

sorted



Quicksort



Quicksort



Quicksort



Quicksort



Quicksort



Quicksort


