Recursion

Thomas Schwarz, SJ

"The power of recursion evidently lies in the possibility of defining an infinite set of objects by a finite statement. In the same manner, an infinite number of computations can be described by a finite recursive program, even if this program contains no explicit reference."

ALGORITHMS + DATASTRUCTURES = PROGRAMS

N.E. WIRTH, 1976

Recursion as a Universal Tool

- Recursion possible:
 - Solution depends partially on solution(s) to (a) smaller problem(s)
- Recursion function consists of
 - Base Case
 - Call to function with smaller arguments

- Euclidean Algorithm
 - Base case: one number is zero
 - Recursion: express the problem using smaller numbers
 - $a > b \Rightarrow \gcd(a, b) = \gcd(b, a \% b)$

Efficient Calculations of Powers

Naive power calculation:

```
def power(x,n):
    acc = 1
    for _ in range(n):
    acc *= x
```

- This uses *n* multiplications.
- Can do better by setting acc = x, but that still uses n-1 multiplications

- There is a better way with recursion
 - If *n* is even, n = 2m: x^n is the product of x^m with itself.
 - If *n* is odd, n = 2m + 1: x^n is $x^m \cdot x^m \cdot x$
- This leads to very simple Python code

Examples of Recursion: Efficient Calculations of Powers

Direct Python Implementation:

```
def power(x, n):
    if n == 0:
        return 1
    if n == 1:
        return x
    if n%2 == 0:
        return power(x, n//2) *power(x, n//2)
    return power(x, n//2) *power(x, n//2) *x
```

- Why does this work?
 - A formal proof can assure that we did not make an implementation mistake
 - Proof is by induction
 - Base Cases: n=0 and n=1 are directly in the code
 - Induction Step: Assume it works for all inputs up to, but not including n
 - Need to show that it also works for n

- Case distinction:
 - If *n* is even:
 - Then $x^n = x^{n/2} \cdot x^{n/2}$ and the code works
 - If *n* is odd
 - Then $x^n = x \cdot x^{n/2} \cdot x^{n/2}$ and the code works
 - Here, we are using the induction hypothesis

Efficient Calculations of Powers

 As you can see, recursion and induction match each other closely

- Performance:
 - Best case: n is a power of 2, i.e. $n = 2^m$
 - By induction: show that the algorithm takes m steps.
 - Each step uses one multiplication.
 - Total of $m = \log_2(n)$ multiplications

- Performance:
 - Worst case: n is always odd
 - $n = 1,3,7,... = a_1, a_2, a_3,...$
 - Next element in this sequence is calculated from the previous: $a_i = 2 \cdot a_{i-1} + 1$
 - Can prove by induction:
 - $a_i = 2^j 1$

- Performance:
 - Worst case: $n = 2^m 1$
 - Two multiplications per step
 - There are m-1 steps
 - Total is 2m-2 multiplications
 - Which is $2 \log_2(n) 2$ multiplications

Examples of Recursion: Efficient Calculations of Powers

• Performance: $O(\log(n))$

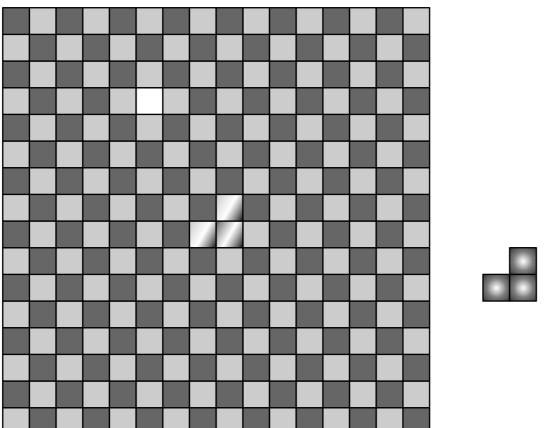
Efficient Calculations of Powers

Implementation using binary operations

```
def power(x, n):
    if n == 0:
        return 1
    if n == 1:
        return x
    m = n >> 1
    r = n&0x01
    p = power(x,m)
    if r:
        return p*p*x
    return p*p
```

Triominos

- We are given a chess board of size $2^m \times 2^m$ with one field removed.
- Write a program that shows how to tessellate the chess board with triominos

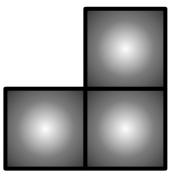


Examples of Recursion: Triominos

- Notice:
 - The chess board has $2^m \times 2^m \equiv (-1)^m \times (-1)^m \equiv 1 \pmod{3}$ fields.
 - A single triomino has three fields
 - So, maybe it is possible

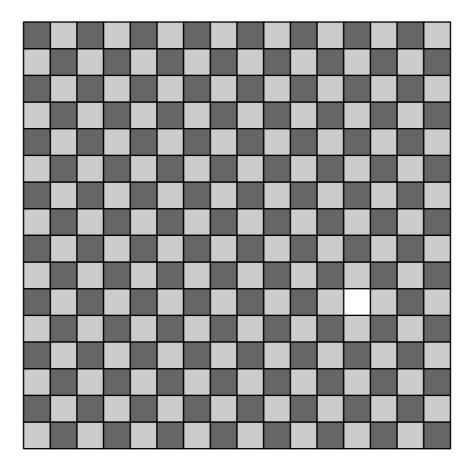
Examples of Recursion: Triominos

- Base Case:
 - m = 1.
 - A two-by-two chess board has four fields.
 - Remove one, and you have a triomino



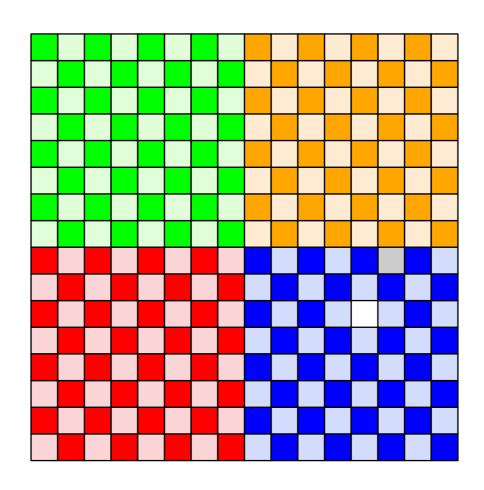
Triominos

- Recursion:
 - A $2^m \times 2^m$ chessboard consists of four $2^{m-1} \times 2^{m-1}$ chessboards.
 - Take such a board with one field removed.



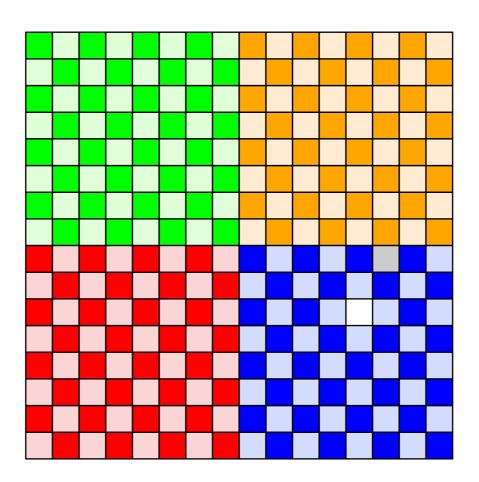
Triominos

Divide the board into four equal parts



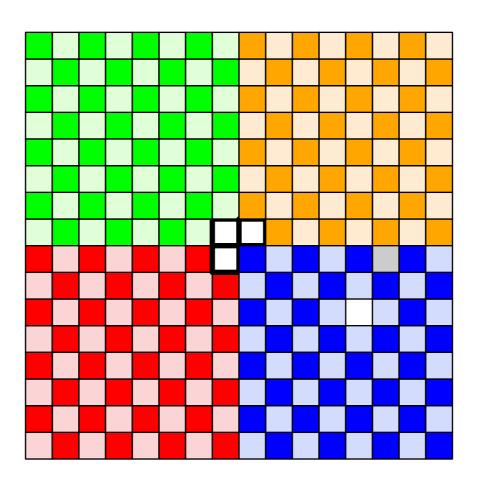
Triominos

- One of them (here the blue one) has the missing field.
- Create a list of triominos that fill this up



Triominos

 Place a Triomino in the middle, cutting out one field from each of the other sub-boards.



Triominos

- Add this triomino to the list.
- The three remaining boards (green, orange, red) can now be covered with triominos

