
Divide and Conquer
Thomas Schwarz, SJ

Divide and Conquer
• Generic recipe for many solutions:

• Divide the problem into two or more smaller instances
of the same problem

• Conquer the smaller instances using recursion (or a
base case)

• Combine the answers to solve the original problem

Integer Multiplication
• Assume we want to multiply two n-bit integers with n a

power of two

• Divide: break the integers into two n/2-bit integers

xL xR

yL yR

x = 2n
2 xL + xR

y = 2n
2yL + yR

Integer Multiplication
• Conquer: Solve the problem of multiplying of n/2 bit

integers by recursion or a base case for n=1, n=2, or
n=4

xL xR

yL yR

x = 2n
2 xL + xR

y = 2n
2yL + yR

xL ⋅ yL xL ⋅ yR xR ⋅ yL xR ⋅ yR

Integer Multiplication
• Now combine:

• In the naïve way:

x ⋅ y = (xL ⋅ 2n
2 + xR) ⋅ (yL ⋅ 2n

2 + yR)

= xL ⋅ yL ⋅ 2n + (xL ⋅ yR + xR ⋅ yL) ⋅ 2n
2 + xR ⋅ yR

Integer Multiplication

• We count the number of multiplications

• Multiplying by powers of 2 is just shifting, so they do
not count

• number of bit multiplications for integers with
bits:

• Recursion:

x ⋅ y = (xL2n
2 + xR) ⋅ (yL2n

2 + yR)

= xL ⋅ yL2n + (xL ⋅ yR + xR ⋅ yL) ⋅ 2n
2 + xR ⋅ yR

2nT(n)

T(0) = 1
T(n + 1) = 4T(n)

Integer Multiplication
• Solving the recursion

• Intuition:

T(0) = 1
T(n + 1) = 4T(n)

T(n) = 4T(n − 1) = 42T(n − 2) = 43T(n − 3) = … = 4nT(0) = 4n

Integer Multiplication
• Proposition:

• Proof by induction:

• Induction base:

• Induction step: Assume . Show

• Proof:

T(n − 1) = 4n−1

T(n) = 4n

T(n) = 4n

T(0) = 1 = 40

T (n) = 4T (n� 1) Recursion Equation

= 4⇥ 4n�1 Induction Assumption

= 4n
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Integer Multiplication
• Since the number of bits is

• Number of multiplications is

• This is not better than normal multiplication

m = 2n

S(m) = T(n) = 4n = (2n)n = m2

Integer Multiplication
• Now combine:

• Instead:

• Use

• This reuses two multiplications that are already used

x ⋅ y = (xL2n
2 + xR) ⋅ (yL2n

2 + yR)
= xL ⋅ yL ⋅ 2n + (xL ⋅ yR + xR ⋅ yL) ⋅ 2n

2 + xR ⋅ yR

(xL ⋅ yR + xR ⋅ yL) = (xL + xR) ⋅ (yL + yR) − xL ⋅ yL − xR ⋅ yR

Integer Multiplication
• We need to deal with the potential overflow in calculating

• This can be dealt with in constant time

(xL + xR) ⋅ (yL + yR)

Integer Multiplication
• Now, we only do three multiplications of bit numbers in

order to multiply two bit numbers

• The recursion becomes

2n

2n+1

T(0) = 1 T(n + 1) = 3T(n)

Integer Multiplication
• Solving the recurrence

• Heuristics:

T(0) = 1 T(n + 1) = 3T(n)

T(n) = 3T(n − 1) = 32T(n − 2) = … = 3nT(0) = 3n

Integer Multiplication
• As before prove exactly using induction

Integer Multiplication
• The multiplication of two -bit numbers takes m = 2n

S(m) = T (n)

= 3n

= 3log2(m)

= exp(log(3log2(m)))

= exp(log2 m log 3)

= exp(logm log 3
1

log2
)

= exp(log(mlog2 3)

= mlog2 3
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Integer Multiplication
• This way, multiplication of m-bit numbers takes

bit multiplications
m1.58496

Integer Multiplication
• Can be used for arbitrary length integer multiplication

• Base case is 32 or 64 bits

• But can still do better using Fast Fourier Transformation

Binary Search
• Given an array of ordered integers, a pointer to the

beginning and to the end of a portion of the array, decide
whether an element is in the slice

• Search(array, beg, end, element)

beg
end

array

Binary Search
• Divide: Determine the middle element. This divides the

array into two subsets

• Conquer: Compare the element with the middle element.
If it is smaller, find out whether the element is in the left
half, otherwise, whether the element is in the right half

• Combine: Just return the answer to the one question

Binary Search
def binary_search(array, beg, end, key):
 if beg >= end:
 return False
 mid = (beg+end)//2
 if array[mid]==key:
 return True
 elif array[mid] > key:
 return binary_search(array, beg, mid, key)
 else:
 return binary_search(array, mid+1, end, key)

test = [2, 3, 5, 6, 12, 15, 17, 19, 21, 23, 27, 29,
 31, 33, 35, 39, 41]
print(binary_search(test, 0, len(test), 21))
print(binary_search(test, 0, len(test), 22))

Binary Search
• Let be the runtime of binary_search on a subarray with

n elements

• Recursion: There is a constant c such that

• The constant represents the cost of

• comparing an element

• all the work done besides the invocation of the function

T(n)

T(1) ≤ c
T(n) ≤ T(n//2) + c

Binary Search
• Solving the recursion

• If then

T (n) T (n//2) + c

 T (n//4) + 2c

. . .

 T (n//2m) +mc
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

m ≥ log2 n T(n) ≤ T(1) + mc = (m + 1)c

Binary Search
• With other words, binary search on n elements takes time

∝ log2(n)

Strassen Multiplication
• Definition of Matrix Multiplication

• (ai,j)1 ≤ i ≤ m
1 ≤ j ≤ n

⋅ (bj,k)1 ≤ j ≤ n
1 ≤ k ≤ p

= (
n

∑
j=1

ai,jbj,k)1 ≤ i ≤ m
1 ≤ k ≤ p

A

B

C
=row i

column j

i row
j column

Strassen Multiplication
• Cost of definition:

• multiplications for all elements in the product

• Square matrices: elements

n mk

n × n n3

Strassen Multiplication
• Divide and conquer: Assume is a power of two.

• We can use the following theorem:

• Break each matrix into four sub-matrices of size
 and calculate

•

n = 2r

2r−1 × 2r−1

(A11 A12
A21 A22) ⋅ (B11 B12

B21 B22) = (A11B11 + A12B21 A11B21 + A12B22
A21B11 + A22B21 A21B21 + A22B22)

Strassen Multiplication
• As is, a divide and conquer algorithm gives us 8

multiplication of matrices half the size.

• Let be the number of multiplications needed to
multiply two matrices using divide and conquer

• Obviously:

• Recursion:

m(n)
2n × 2n

m(1) = 1

m(n + 1) = 8m(n)

Strassen Multiplication
• Claim:

• Proof: Induction base:

• Induction step:

• Hypothesis:

• To show:

• Proof:

m(n) = 23n

m(0) = 1 = 23⋅0

m(n) = 23n

m(n + 1) = 23(n+1)

m(n + 1) = 8m(n) = 8 ⋅ 23n = 23 ⋅ 23n = 23n+3 = 23(n+1)

Strassen Multiplication
• That is the same as the normal algorithm

Strassen Multiplication
• Strassen: Can use 7 matrix multiplications to calculate all eight

products

•

•

•

•

•

•

•

M1 := (A1,1 + A2,2)(B1,1 + B2,2)

M2 := (A2,1 + A2,2)B1,1

M3 := A1,1(B1,2 − B2,2)

M4 := A2,2(B2,1 − B1,1)

M5 := (A1,1 + A1,2)B2,2

M6 := (A2,1 − A1,1)(B1,1 + B1,2)

M7 := (A1,2 − A2,2)(B2,1 + B2,2)

Strassen Multiplication
• Then can get all the sub-matrices on the right:

•

•

•

•

C1,1 = M1 + M4 − M5 + M7

C1,2 = M3 + M5

C2,1 = M2 + M4

C2,2 = M1 − M2 + M3 + M6

Strassen Multiplication
• Now the recurrence becomes

•

• which is obviously solved by

• .

m(n + 1) = 7m(n), m(0) = 1

m(n) = 7n

Strassen Multiplication
• Remember that the size of the matrix was .

• Thus, if is the number of multiplications for an
matrix with power of 2 rows, then

•

• Since

•

2n × 2n

M(n) n × n

M(n) = m(log2(n)) = 7log2(n)

log2(7log2(n)) = log2(n)log2(7) = log2(7)log2(n) = log2(nlog2(7))

M(n) = nlog2(7) ≈ n2.80735

Strassen Multiplication
• The algorithm can be extended for matrices that

• have number of rows = number of columns not a power
of 2

• are not square

Merge-Sort
• Idea:

• It is easy to create a single sorted array out of two
sorted arrays

• Look at the first elements in each array

• Move the smaller one into the target array

Merge-Sort
def merge(arr1, arr2):
 target = []
 ione, itwo = 0,0
 while ione<len(arr1) and itwo<len(arr2):
 if arr1[ione]<arr2[itwo]:
 target.append(arr1[ione])
 ione += 1
 else:
 target.append(arr2[itwo])
 itwo += 1
 if ione == len(arr1):
 target += arr2[itwo:]
 else:
 target += arr1[ione:]

Merge-Sort
• Example

• Merge

•

• Initialize target list, set two indices equal to 0

138 1210 5 11

106 932 4 7

Merge-Sort
• Compare elements at indices

•

• 0 < 2: Select 0 and move first index to right

•

138 1210 5 11

106 932 4 7

138 121 5 11

106 932 4 7
0

Merge-Sort
• Repeat

•

•

138 121 5 11

106 932 4 7
0

138 12
1

5 11

106 932 4 7
0

Merge-Sort

•

•

138 12
1

5 11

106 932 4 7
0

138 12
1

5 11

106 93
2

4 7
0

Merge-Sort
138 12

1
5 11

106 93
2

4 7
0

138 12
1

5 11

106 9
32

4 7
0

Merge-Sort
138 12

1
5 11

106 9
32

4 7
0

138 12
1

5 11

106 9
32 4

7
0

Merge-Sort
138 12

1
5 11

106 9
32 4

7
0

138 12
1 5

11

106 9
32 4

7
0

Merge-Sort
138 12

1 5
11

106 9
32 4

7
0

138 12
1 5

11

10
6

9
32 4

7
0

Merge-Sort
138 12

1 5
11

10
6

9
32 4

7
0

138 12
1 5

11

10
6

9
32 4 70

Merge-Sort
138 12

1 5
11

10
6

9
32 4 70

13
8

12
1 5

11

10
6

9
32 4 70

Merge-Sort
13

8
12

1 5
11

10
6

9
32 4 70

13
8

12
1 5

11

10
6 932 4 70

Merge-Sort
13

8
12

1 5
11

10
6 932 4 70

13
8

12
1 5

11
106 932 4 70

Merge-Sort

13

8

12

1 5

11

106 932 4 70

Second Index has reached the end of array: Expand with first

81 5 106 932 4 70

Merge-Sort
• Divide and conquer:

• Divide array in two halves

•

• Apply recursively merge-sort

•

• Merge both arrays

mid = len(arr)//2
arr1, arr2 = arr[:mid], arr[mid:]

arr1 = merge_sort(arr1)
arr2 = merge_sort(arr2)

Merge-Sort
def merge_sort(arr):
 if len(arr) < 2:
 return arr
 mid = len(arr)//2
 arr1, arr2 = arr[:mid], arr[mid:]
 arr1 = merge_sort(arr1)
 arr2 = merge_sort(arr2)
 return merge(arr1, arr2)

Merge-Sort
• In practice:

• Merge-sort is not so good on very small arrays

• Use something as bad as bubble-sort for arrays of
small size

Merge-Sort
• Performance:

• Merge of two arrays with elements total?

• Up to comparisons

• Recurrence formula for the number of comparisons is
approximately

•

n1 + n2 = n

n − 1

C(n) = 2 ⋅ C(n/2) + n

Merge-Sort
• Ad hoc solution of the recurrence relation

•

•

•

•

•

•

C(n) = 2C(n/2) + n

= 2 ⋅ (2C(n/4) +
n
2

) + n = 4C(n/4) + n + n

= 8C(n/8) + n + n + n

= 16C(n/16) + n + n + n + n

…

= n + n + …n = log(n)(n + 1)

Quick-Sort
• Merge Sort:

• Divide is simple

• Work is done in the merge step

• Quick Sort

• Work is done in the divide step

• Conquer part is simple

• Key Idea:

• Pick a pivot, form two arrays: those smaller than the
pivot and those larger than the pivot

