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Divide and Conquer
• Generic recipe for many solutions:


• Divide the problem into two or more smaller instances 
of the same problem


• Conquer the smaller instances using recursion (or a 
base case)


• Combine the answers to solve the original problem



Integer Multiplication
• Assume we want to multiply two n-bit integers with n a 

power of two


• Divide:  break the integers into two n/2-bit integers

xL xR

yL yR

x = 2n
2 xL + xR

y = 2n
2yL + yR



Integer Multiplication
• Conquer: Solve the problem of multiplying of n/2 bit 

integers by recursion or a base case for n=1, n=2, or 
n=4

xL xR

yL yR

x = 2n
2 xL + xR

y = 2n
2yL + yR

xL ⋅ yL xL ⋅ yR xR ⋅ yL xR ⋅ yR



Integer Multiplication
• Now combine:


• In the naïve way:

x ⋅ y = (xL ⋅ 2n
2 + xR) ⋅ (yL ⋅ 2n

2 + yR)

= xL ⋅ yL ⋅ 2n + (xL ⋅ yR + xR ⋅ yL) ⋅ 2n
2 + xR ⋅ yR



Integer Multiplication

• We count the number of multiplications


• Multiplying by powers of 2 is just shifting, so they do 
not count


•           number of bit multiplications for integers with     
bits:


• Recursion:    

x ⋅ y = (xL2n
2 + xR) ⋅ (yL2n

2 + yR)

= xL ⋅ yL2n + (xL ⋅ yR + xR ⋅ yL) ⋅ 2n
2 + xR ⋅ yR

2nT(n)

T(0) = 1
T(n + 1) = 4T(n)



Integer Multiplication
• Solving the recursion


• Intuition:  

T(0) = 1
T(n + 1) = 4T(n)

T(n) = 4T(n − 1) = 42T(n − 2) = 43T(n − 3) = … = 4nT(0) = 4n



Integer Multiplication
• Proposition:  


• Proof by induction:


• Induction base:


• Induction step:  Assume  . Show 



• Proof:  

T(n − 1) = 4n−1

T(n) = 4n

T(n) = 4n

T(0) = 1 = 40

T (n) = 4T (n� 1) Recursion Equation

= 4⇥ 4n�1 Induction Assumption

= 4n
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Integer Multiplication
• Since the number of bits is 


• Number of multiplications is


• This is not better than normal multiplication 

m = 2n

S(m) = T(n) = 4n = (2n)n = m2



Integer Multiplication
• Now combine:


• Instead:


• Use


• This reuses two multiplications that are already used   

x ⋅ y = (xL2n
2 + xR) ⋅ (yL2n

2 + yR)
= xL ⋅ yL ⋅ 2n + (xL ⋅ yR + xR ⋅ yL) ⋅ 2n

2 + xR ⋅ yR

(xL ⋅ yR + xR ⋅ yL) = (xL + xR) ⋅ (yL + yR) − xL ⋅ yL − xR ⋅ yR



Integer Multiplication
• We need to deal with the potential overflow in calculating


• This can be dealt with in constant time

(xL + xR) ⋅ (yL + yR)



Integer Multiplication
• Now, we only do three multiplications of      bit numbers in 

order to multiply two          bit numbers


• The recursion becomes 

2n

2n+1

T(0) = 1 T(n + 1) = 3T(n)



Integer Multiplication
• Solving the recurrence


• Heuristics: 

T(0) = 1 T(n + 1) = 3T(n)

T(n) = 3T(n − 1) = 32T(n − 2) = … = 3nT(0) = 3n



Integer Multiplication
• As before prove exactly using induction



Integer Multiplication
• The multiplication of two                 -bit numbers takes m = 2n

S(m) = T (n)

= 3n

= 3log2(m)

= exp(log(3log2(m)))

= exp(log2 m log 3)

= exp(logm log 3
1

log2
)

= exp(log(mlog2 3)

= mlog2 3
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Integer Multiplication
• This way, multiplication of m-bit numbers takes                 

bit multiplications
m1.58496



Integer Multiplication
• Can be used for arbitrary length integer multiplication


• Base case is 32 or 64 bits 


• But can still do better using Fast Fourier Transformation



Binary Search
• Given an array of ordered integers, a pointer to the 

beginning and to the end of a portion of the array, decide 
whether an element is in the slice


•  Search(array, beg, end, element) 

beg
end

array



Binary Search
• Divide:  Determine the middle element. This divides the 

array into two subsets


• Conquer:  Compare the element with the middle element. 
If it is smaller, find out whether the element is in the left 
half, otherwise, whether the element is in the right half


• Combine:  Just return the answer to the one question



Binary Search
def binary_search(array, beg, end, key): 
    if beg >= end: 
        return False 
    mid = (beg+end)//2 
    if array[mid]==key: 
        return True 
    elif array[mid] > key: 
        return binary_search(array, beg, mid, key) 
    else: 
        return binary_search(array, mid+1, end, key) 

test = [2, 3, 5, 6, 12, 15, 17, 19, 21, 23, 27, 29,  
        31, 33, 35, 39, 41] 
print(binary_search(test, 0, len(test), 21)) 
print(binary_search(test, 0, len(test), 22)) 



Binary Search
• Let         be the runtime of binary_search on a subarray with 

n elements


• Recursion: There is a constant c such that 


• The constant represents the cost of 


• comparing an element


• all the work done besides the invocation of the function

T(n)

T(1) ≤ c
T(n) ≤ T(n//2) + c



Binary Search
• Solving the recursion


• If                       then 

T (n)  T (n//2) + c

 T (n//4) + 2c

. . .

 T (n//2m) +mc
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m ≥ log2 n T(n) ≤ T(1) + mc = (m + 1)c



Binary Search
• With other words, binary search on n elements takes time 

∝ log2(n)



Strassen Multiplication
• Definition of Matrix Multiplication


• (ai,j)1 ≤ i ≤ m
1 ≤ j ≤ n

⋅ (bj,k)1 ≤ j ≤ n
1 ≤ k ≤ p

= (
n

∑
j=1

ai,jbj,k)1 ≤ i ≤ m
1 ≤ k ≤ p

A

B

C
=row i

column j

i row 
j column



Strassen Multiplication
• Cost of definition:


•  multiplications for all  elements in the product


• Square  matrices:   elements

n mk

n × n n3



Strassen Multiplication
• Divide and conquer:  Assume  is a power of two.


• We can use the following theorem: 


• Break each matrix into four sub-matrices of size 
 and calculate 


•

n = 2r

2r−1 × 2r−1

(A11 A12
A21 A22) ⋅ (B11 B12

B21 B22) = (A11B11 + A12B21 A11B21 + A12B22
A21B11 + A22B21 A21B21 + A22B22)



Strassen Multiplication
• As is, a divide and conquer algorithm gives us 8 

multiplication of matrices half the size.


• Let  be the number of multiplications needed to 
multiply two  matrices using divide and conquer


• Obviously:  


• Recursion:  

m(n)
2n × 2n

m(1) = 1

m(n + 1) = 8m(n)



Strassen Multiplication
• Claim:  


• Proof:  Induction base:  


• Induction step:


• Hypothesis:  


• To show:  


• Proof: 


m(n) = 23n

m(0) = 1 = 23⋅0

m(n) = 23n

m(n + 1) = 23(n+1)

m(n + 1) = 8m(n) = 8 ⋅ 23n = 23 ⋅ 23n = 23n+3 = 23(n+1)



Strassen Multiplication
• That is the same as the normal algorithm



Strassen Multiplication
• Strassen:  Can use 7 matrix multiplications to calculate all eight 

products


• 


• 


• 


• 


• 


• 


•

M1 := (A1,1 + A2,2)(B1,1 + B2,2)

M2 := (A2,1 + A2,2)B1,1

M3 := A1,1(B1,2 − B2,2)

M4 := A2,2(B2,1 − B1,1)

M5 := (A1,1 + A1,2)B2,2

M6 := (A2,1 − A1,1)(B1,1 + B1,2)

M7 := (A1,2 − A2,2)(B2,1 + B2,2)



Strassen Multiplication
• Then can get all the sub-matrices on the right:


• 


• 


• 


•

C1,1 = M1 + M4 − M5 + M7

C1,2 = M3 + M5

C2,1 = M2 + M4

C2,2 = M1 − M2 + M3 + M6



Strassen Multiplication
• Now the recurrence becomes 


• 


• which is obviously solved by 


• .

m(n + 1) = 7m(n), m(0) = 1

m(n) = 7n



Strassen Multiplication
• Remember that the size of the matrix was .


• Thus, if  is the number of multiplications for an  
matrix with power of 2 rows, then 


• 


• Since





•

2n × 2n

M(n) n × n

M(n) = m(log2(n)) = 7log2(n)

log2(7log2(n)) = log2(n)log2(7) = log2(7)log2(n) = log2(nlog2(7))

M(n) = nlog2(7) ≈ n2.80735



Strassen Multiplication
• The algorithm can be extended for matrices that 


• have number of rows = number of columns not a power 
of 2


• are not square



Merge-Sort
• Idea:


• It is easy to create a single sorted array out of two 
sorted arrays


• Look at the first elements in each array


• Move the smaller one into the target array



Merge-Sort 
def merge(arr1, arr2): 
   target = [ ] 
   ione, itwo = 0,0 
   while ione<len(arr1) and itwo<len(arr2): 
      if arr1[ione]<arr2[itwo]: 
         target.append(arr1[ione]) 
         ione += 1 
      else: 
         target.append(arr2[itwo]) 
         itwo += 1 
   if ione == len(arr1): 
      target += arr2[itwo:] 
   else: 
      target += arr1[ione:]



Merge-Sort
• Example


• Merge


•  


• Initialize target list, set two indices equal to 0

138 1210 5 11

106 932 4 7



Merge-Sort
• Compare elements at indices


• 


• 0 < 2:  Select 0 and move first index to right


•

138 1210 5 11

106 932 4 7

138 121 5 11

106 932 4 7
0



Merge-Sort
• Repeat


• 


•

138 121 5 11

106 932 4 7
0

138 12
1

5 11

106 932 4 7
0



Merge-Sort

• 


•

138 12
1

5 11

106 932 4 7
0

138 12
1

5 11

106 93
2

4 7
0



Merge-Sort
138 12

1
5 11

106 93
2

4 7
0

138 12
1

5 11

106 9
32

4 7
0



Merge-Sort
138 12

1
5 11

106 9
32

4 7
0

138 12
1

5 11

106 9
32 4

7
0



Merge-Sort
138 12

1
5 11

106 9
32 4

7
0

138 12
1 5

11

106 9
32 4

7
0



Merge-Sort
138 12

1 5
11

106 9
32 4

7
0

138 12
1 5

11

10
6

9
32 4

7
0



Merge-Sort
138 12

1 5
11

10
6

9
32 4

7
0

138 12
1 5

11

10
6

9
32 4 70



Merge-Sort
138 12

1 5
11

10
6

9
32 4 70

13
8

12
1 5

11

10
6

9
32 4 70



Merge-Sort
13

8
12

1 5
11

10
6

9
32 4 70

13
8

12
1 5

11

10
6 932 4 70



Merge-Sort
13

8
12

1 5
11

10
6 932 4 70

13
8

12
1 5

11
106 932 4 70



Merge-Sort

13

8

12

1 5

11

106 932 4 70

Second Index has reached the end of array: Expand with first

81 5 106 932 4 70



Merge-Sort
• Divide and conquer:


• Divide array in two halves


•  


• Apply recursively merge-sort


•   


• Merge both arrays

mid = len(arr)//2 
arr1, arr2 = arr[:mid], arr[mid:]

arr1 = merge_sort(arr1) 
arr2 = merge_sort(arr2)



Merge-Sort
def merge_sort(arr): 
   if len(arr) < 2: 
      return arr 
   mid = len(arr)//2 
   arr1, arr2 = arr[:mid], arr[mid:] 
   arr1 = merge_sort(arr1) 
   arr2 = merge_sort(arr2) 
   return merge(arr1, arr2) 
    



Merge-Sort
• In practice:


• Merge-sort is not so good on very small arrays


• Use something as bad as bubble-sort for arrays of 
small size



Merge-Sort
• Performance:


• Merge of two arrays with  elements total?


• Up to  comparisons


• Recurrence formula for the number of comparisons is 
approximately


•

n1 + n2 = n

n − 1

C(n) = 2 ⋅ C(n/2) + n



Merge-Sort
• Ad hoc solution of the recurrence relation


• 


•          


•           


•            


•             


•             

C(n) = 2C(n/2) + n

= 2 ⋅ (2C(n/4) +
n
2

) + n = 4C(n/4) + n + n

= 8C(n/8) + n + n + n

= 16C(n/16) + n + n + n + n

…

= n + n + …n = log(n)(n + 1)



Quick-Sort
• Merge Sort:


• Divide is simple


• Work is done in the merge step


• Quick Sort


• Work is done in the divide step


• Conquer part is simple


• Key Idea:


• Pick a pivot, form two arrays: those smaller than the 
pivot and those larger than the pivot


