Sorting and Element Selection

Thomas Schwarz, SJ

 A permutation of the set {1,2,...,n} is a reordering of the numbers where each number between 1 and n appears exactly once.

- How many permutations are there?
 - Use recurrence!
 - In a permutation of {1,2,...,*n*}, where is the *n* located?
 - There are n-1 other numbers.
 - This gives us n 2 gaps and spots before and after

- Let *n*! be the number of permutations of *n* elements
 - This gives us the recurrence

•
$$n! = n \cdot (n-1)!$$

• which can be unfolded very simply

•
$$n! = \prod_{i=1}^{n} i$$

How do we determine its asymptotic growth?

 $n! = \prod_{i=1}^{n} i$

Use Logarithms!

• Approximation of the factorial

Use
$$\log n! = \sum_{i=1}^{n} \log(i)$$

Use an integral!

1

$$\log(n!) = \sum_{i=1}^{n} \log(i)$$
$$\approx \int_{i=1}^{n} \log(x) dx$$
$$= [x \log x - x]_{1}^{n}$$
$$= n \log(n) - n + 1$$

Therefore

$$n! \approx \exp(n \log(n) - n - 1)$$
$$= \exp(\log(n^n) - n + 1)$$
$$= n^n \cdot e^{-n} \cdot e$$
$$= e \cdot \left(\frac{n}{e}\right)^n$$

An analysis of the error substituting the Riemann sum for an integral gives Stirling's approximation (invented by de Moivre)

$$\sqrt{2\pi n} \left(rac{n}{e}
ight)^n e^{\left(rac{1}{12n} - rac{1}{360n^3}
ight)} < n! < \sqrt{2\pi n} \left(rac{n}{e}
ight)^n e^{rac{1}{12n}}.$$

- Many sorting algorithms use comparisons
- An algorithm needs to be able to sort with all orders of inputs, i.e. distinguish between n! arrangements of the input by order
 - assuming all elements are different

- Sorting algorithm makes a comparison, then decides on what to do
- These algorithms can be represented as a binary tree

A fictitious algorithm for sorting three elements as a Decision Tree

- Represent any comparison based algorithm by such a tree
- Any run of the algorithm represents a path from the root to a leaf node
- Leaf nodes represent an algorithm finishing.
 - Each leaf represents an ordering of the array
 - So, there are at least n! of them for an array of n elements

- How many leaves does a tree with N leaves have?
- A tree of height *h* has how many leaves?
 - Height 0: only root, one leaf
 - Height 1: only root plus one or two leaves: ≤ 2
 - Height 2: at most two nodes at height one have at most $\leq 2^2$ leaves
 - Induction: Height h has at most 2^h leaves

- Relationship between height of decision tree and number of elements to be sorted:
 - Need to have at least *n*! leaves:
 - $2^h \ge n!$
 - which implies

•
$$h \ge \log_2(n!) = \frac{1}{\log(2)} \log(n!)$$

• $\approx \frac{1}{\log(2)} n \log(n) - n + 1$

• $= \Theta(n \log(n))$

• Since the height of the decision tree is the worst time runtime, we have

• The runtime of a comparison based sorting algorithm is at best $\Theta(n \log(n))$

- In order to do better:
 - Needs to exploit special inputs

- In fact:
 - Sorting integers can be done in linear time

- Counting sort
 - Assume we want to sort numbers in $\{1,2,\ldots,k-1,k\}$
 - Create a dictionary with keys in $\{1, 2, \dots, k 1, k\}$
 - E.g. as an array Int(1:k)
 - Walk through the array, updating the count
 - Once the count is done, go through the dictionary in order of the keys, emitting as many keys as the count

• Counting sort:

•	10	3	4	10	12	4	5	3	8	9	2	2	5	10	1	2	7

• create a counting array:

]]
•	1:	2:	3:	4:	5:	6:	7:	8:	9:	10:	11:	12:	13:

• Walk through the array and calculate counts

_													
•	1: 1	2: 3	3: 3	4: 2	5: 2	6: 0	7: 1	8: 1	9: 1	10: 3	11: 0	12: 1	13: 0

- Emit keys according to count
 - 1222333445578910101012

- If there are n elements in the array, then counting sort uses
 - $\sim k$ to create and evaluate the counting array
 - $\sim n$ to update the counting array
- Therefore: counting sort run-time is $\Theta(n+k)$

- Radix Sort
 - Imagine sorting punch cards with by ID in the first columns

- Simple Method:
 - Create heaps of cards based on the first digit
 - Then recursively sort the heaps

- Better method:
 - Sort according to the last digit
 - Then use a *stable sort* to sort after the second-last digit
 - Then use a stable sort to sort after the third-last digit

- Stable sort:
 - Leave order of elements with the same key during sorting
 - Insertion sort, merge sort, bubble sort, counting sort are all stable
 - Heap sort, selection sort, shell sort, and quick sort are not

- Radix sort:
 - for i in range(length(key), 0, -1):
 stable_sort on digit i of key

135
242
122
023
220
144
321
221
203
302

220
321
221
242
122
302
023
203
144
135

302	
203	
220	
321	
221	
122	
023	
135	
242	
144	

023	
122	
135	
144	
203	
220	
221	
242	
302	
321	

- Radix sort correctness
 - What would be a loop invariant?

- Assume *n* keys of *d* digits in $\{0, 1, \dots, r-1\}$
- Use counting sort to sort in time $\Theta(n + r)$
- Radix sort then takes $\Theta(d(n + r))$ time

- Given *n* numbers of *b* bits each
- Assume $b = O(\log(n))$
- Choose $r = \lfloor \log_2(n) \rfloor$.
 - Divide the b-bit numbers into "digits" of length r
 - Thus, each round of radix sort takes time $\Theta(n+2^r)$

• There are
$$\lceil \frac{b}{r} \rceil$$
 rounds

• So, radix sort takes $\Theta(\frac{b}{r}(n+2^r)) = \Theta(\frac{b}{r}(n+n)) = \Theta(n)$ time!

Selection

Selection Problems

- Given an unordered array:
 - Find the k-largest (-smallest) element in an unordered array
 - Naïve Solution:
 - Sort (usually in time $\Theta(n \log n)$)
 - Pick element n k or k of the sorted array

Selection Problem

- Finding the maximum
- Finding the maximum and minimum at the same time
- Finding the k^{th} largest element
- Finding the median

Maximum

• Obvious algorithm:

```
def max(array):
    result = array[0]
    for i in range(1, len(array)):
        if array[i]>result:
            result = array[i]
```

• n-1 comparisons

Maximum

- Toy algorithm:
 - Partition array into $\lfloor n/2 \rfloor$ pairs.
 - (There might be an additional element).
 - Use one comparison in order to select the largest of each pair (plus the odd one out if exists)
 - These form an array of length $\lfloor n/2 \rfloor + 1$
 - Recursively call the toy algorithm
• What is the recurrence relation?

- $T(n) = T(n \lfloor n/2 \rfloor) + \lfloor n/2 \rfloor$
- T(2) = 1

• Now use substitution to get an idea of solving the recurrence

• Assume *n* is a power of 2

- Recurrence then becomes
 - T(n) = T(n/2) + n/2, T(2) = 1

•
$$= T(n/4) + n/4 + n/2$$

. . .

•
$$= T(n/8) + n/8 + n/4 + n/2$$

- $= T(2) + 2 + 4 + 8 + \dots + n/8 + n/4 + n/2$
- = n 1

- Now prove by induction for all $n \in \mathbb{N}$
- $T(n) = T(n \lfloor n/2 \rfloor) + \lfloor n/2 \rfloor$
- T(2) = 1

- Induction Hypothesis: T(m) = m 1 if m < n.
- *T*(*n*)
 - $= T(n \lfloor n/2 \rfloor) + \lfloor n/2 \rfloor$
 - $= n \lfloor n/2 \rfloor 1 + \lfloor n/2 \rfloor$
 - = n 1

- In fact:
 - Theorem: Finding the maximum of an array of length n costs at least n 1 comparisons
 - *Proof*: Place all elements into three buckets:
 - One for not-looked at
 - One for won all comparisons
 - One for lost all comparisons

- A single comparison can involves 6 cases
 - X-X: move two elements from X, one into W, one into L
 - X-W: move one element from X into W or move one element from X into W and one from W into L
 - X-L: move one element from X into W or one into L
 - W-W: move one element from W to L
 - W-L: nothing or move one element from W to L
 - L-L: nothing

- To have finished the algorithm:
 - No elements left in X
 - Only one element left in W

• Otherwise, can construct counterexample

• One left in X: could be the maximum

- Two (or more) left in W:
 - Which one is the maximum?

- Each comparison sends at most one element to L
- At best, n-1 comparisons

- Combined Maximum and Minimum
 - Naïve algorithm:
 - Calculate the max, then the min (can exclude the max)
 - m-1+m-2=2m-3 comparisons

- A better algorithm
 - Divide the array into pairs
 - Compare the values of each pair
 - Place the winner of each pair in one array, the looser of each array in a second array
 - (Or use swapping so that the winners are in even position and the losers are in odd positions)
 - Now use maximum and minimum on the two subarrays

- Case 1: *n* is even
 - There are n/2 pairs or n/2 comparisons

- Run maximum on even indexed array elements
- This gives us n/2 1 comparisons
- Same for minimum

• Total is
$$n/2 + n/2 - 1 + n/2 - 1 = \frac{3n}{2} - 2$$
 comparisons

- Case: *n* is odd
 - Run algorithm on the first n-1 elements

•
$$\frac{3n-3}{2} - 2$$
 comparisons

• Then add two comparisons to see whether the last element is either minimum or maximum

• Total of
$$\frac{3n-3}{2}$$
 comparisons

- Can we do better?
 - Use a more sophisticated bin method
 - X not looked at, W won every comparison, L lost every comparison, Q - at least one win and at least one loss

 To be successful, need to move everything out of X and have only one element in W and L

• Otherwise can have a counter-example

- Just counting the moves is not sufficient
 - Example:
 - We compare an element $w \in W$ with an element $l \in L$
 - Possibly: w < l
 - And we move both elements to the ${\cal Q}$ bucket
 - So, possible to move all *n* elements out of *X* into *W* ∪ *L* in *n*/2 comparisons and *n* − 2 elements out of *W* ∪ *L* into *Q* in *n*/2 − 1 comparisons
 - Only gives n 1 moves!

- Use an **adversary** argument
 - Algorithm can <u>only</u> depend on the knowledge of the <u>previous</u> comparisons when making a decision
- An adversary is allowed to change all values as long as the results of the comparisons stay the same
 - If w ∈ W and l ∈ L, then the only thing the algorithm knows is that w has won all of its comparisons and l has lost all of its comparisons
 - Adversary therefore is allowed to change the value of *l* downward
 - Adversary guarantees that w > l.

- With the help of the adversary who substitutes values when needed
- Potential: $\frac{3}{2}|X| + |W| + |L|$
 - Calculate net changes for comparisons between buckets

- Compare X with X
 - Net change (-2, 1, 1, 0)
 - Potential change: 1

- Compare X with W
 - Case 1: $x \in X, w \in W, x < w$ Net change (-1,0,1,0)
 - Case 2: $x \in X, w \in W, x > w$ Net change(-1,0,0,1)
 - The adversary can prevent Case 2 by decreasing *x*
 - Possible because this is the first time that we look at
- Potential changes by $\frac{1}{2}$

- Compare X with L
 - similar as before

- Compare X with Q
 - The element in X changes to either $W \, {\rm or} \, L$
 - Net change (-1, 1, 0, 0) or (-1, 0, 1, 0)
 - Potential change $\frac{1}{2}$

- Compare W with W
 - One element looses
 - Net change (0, -1, 0, 1)
 - Potential change 1

- Compare W with L
 - Adversary guarantees that the element in W wins by making <u>all</u> of them bigger
 - This works because each element in W has only seen wins and that does not change if the elements are made bigger.
 - No change

- Compare W with Q
 - Since the elements in W have always won, the adversary can make them larger
 - No net change

- Comparisons with L are the same as with ${\cal W}$
- Comparisons within Q are useless, but make no changes

- With the help of the adversary
 - Potential changes by at most 1
- Initial Potential: $\frac{3}{2}n$
- Final Potential: 2

• Need at least
$$\frac{3n-4}{2}$$
 comparisons

- Find the k^{th} largest element
 - Algorithm 1: Use the idea of quicksort
 - Find a random pivot and partition around it

- Now use recursion:
 - If $k \leq \text{len}(A_{>p})$ find the k^{th} largest element in $A_{>p}$
 - If $k = \operatorname{len}(A_{>p}) + 1$, select p
 - If $k > \text{len}(A_{>p})$, find the $k-\text{len}(A_{< p}) 1$ largest element in $A_{< p}$

- Worst case behavior:
 - Pivot is always the maximum
 - Search in array of length one less
 - Partitioning an array of length takes $\Theta(n)$ time
 - Worst time: $\sim n + (n 1) + (n 2) + ... + 2 + 1$ • $= \frac{n(n + 1)}{2}$ • $= \Theta(n^2)$

- Expected behavior:
 - Let T(n) be the expected run-time on input array n
 - How does the pivot fall in an array?

- Call either T(k) or T(l) = T(n k 1) or are done
- Bad luck assumption:
 - its always the one for the larger array
- All positions of the pivot are equally probable

• Gives a recurrence

•
$$T(n) \le 2 \sum_{i=\lfloor n/2 \rfloor}^{n-1} \frac{1}{n} T(i) + dn$$

- where *dn* is the costs of partitioning
- Now assume that $T(n) \leq cn$

Then:

$$\begin{split} T(n) &\leq \frac{2}{n} \sum_{i=\lfloor n/2 \rfloor}^{n-1} \frac{1}{n} T(i) + dn \\ &\leq \frac{2c}{n} \left(\sum_{i=1}^{n-1} i - \sum_{i=1}^{\lfloor n/2 \rfloor} i \right) + dn \\ &= \frac{2c}{n} \left(\frac{(n-1)n}{2} - \frac{(\lfloor n/2 \rfloor - 1)\lfloor n/2 \rfloor}{2} \right) + dn \\ &\leq \frac{2c}{n} \left(\frac{(n-1)n}{2} - \frac{(n/2 - 2)(n/2 - 1)}{2} \right) + dn \end{split}$$

$$= c(\frac{3n}{4} + \frac{1}{2} - \frac{2}{n}) + dn$$
$$= cn - \left(\frac{cn}{4} - \frac{c}{2} - dn\right)$$

which is \leq cn if and only if

$$\frac{cn}{4} - \frac{c}{2} - dn \ge 0$$

 $\iff cn \ge 2c + 4dn$

$$\iff c \ge 2c/n + 4d$$

If we assume $n \ge 4$, then the right side is at most $\frac{c}{2} + 4d$

Thus, if c > 8d then the previous calculation goes through

- We have shown
 - T(n) < Cn if $n \ge 4$ and $C \ge 8d$
- Make C larger if necessary to obtain

• $T(1) \le C, T(2) \le 2C, T(3) \le 3C, T(4) \le 4C$

- Then: Induction base works and Induction hypothesis works.
- So: expected runtime is linear
- But: we can do better

- Linear worst case selection
 - Idea: Improve the selection of the pivot!
 - Need to take at most linear time for the pivot selection

- Divide the *n* elements of the input array into $\lfloor n/5 \rfloor$ groups of five elements and possibly one additional group
- In each group, choose the median (middle element)
 - In the last one, you might need to break a tie

• Then select the median of the medians by **recurrence**

- Show that the median of medians divides the array fairly well
- Show that adding up the costs, we still are linear

- About half the medians are below the median of medians
- About half the medians are atop of the median of medians
- This allows us to guarantee that a certain number of elements is below and a certain number of elements is above the median of medians

A number of elements are below and above the median of medians for sure.

- At least half of the medians are greater or equal than the median of medians
- At least half of the $\lceil n/5 \rceil$ contributes at least three elements that are larger
 - Discard the group that is smaller and the group with the median of median
- The number of elements larger than the median of medians is at least

•
$$3\left(\left\lceil\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil\right\rceil-2\right)$$

•
$$3\left(\left\lceil\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil\right\rceil-2\right) \ge \frac{3n}{10}-6$$
 larger than the median of

medians

•
$$3\left(\left\lceil\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil\right\rceil-2\right) \ge \frac{3n}{10}-6$$
 smaller than the median

of medians

- T(n) run time of the algorithm
 - Division into groups of five: $\Theta(n)$
 - Determination of the medians: $\Theta(n)$ because there are $\Theta(n)$ groups and we sort them in constant time to get the median
 - Determination of the median of median by recurrence $T(\lceil \frac{n}{5} \rceil)$
 - Partitioning around the median of medians $\Theta(n)$
 - Recursive call on at most $n \frac{3n}{10} 6 = \frac{7n}{10} + 6$ elements

• Total runtime:

•
$$T(n) \le T(\lceil \frac{n}{5} \rceil) + T(0.7n + 6) + an$$

- Show that this is linear using induction / substitution
- Again: induction step only needs to work for large enough

$$T(n) \le c(\frac{n}{5} + 1) + c(\frac{7n}{10} + 6) + an$$
$$= 0.9cn + 7c + an$$

This is at most *cn* if and only if $7c + an \le 0.1cn$.

Since
$$7c + an \le 0.1cn \iff \frac{70}{n}c + 10a \le c$$
, we assume $n > 140$ so that *c* needs to be larger than $20a$.

- We also need to make *c* larger than T(1), T(2)/2, ..., T(140)/140
- Then we have an induction base on 140 values
- And an induction step that works
- So $T(n) \leq cn$

- This algorithm makes no assumptions on the input
- Unlike our results on linear sorting