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Permutations
• A permutation of the set  is a reordering of the 

numbers where each number between 1 and n appears 
exactly once.

{1,2,…, n}



Permutations
• How many permutations are there?


• Use recurrence!


• In a permutation of , where is the  
located?


• There are  other numbers. 


• This gives us  gaps and spots before and after

{1,2,…, n} n

n − 1

n − 2

a1 a2 a3 a4 a5



Permutations
• Let  be the number of permutations of  elements


• This gives us the recurrence 


• 


• which can be unfolded very simply


•                          

n! n

n! = n ⋅ (n − 1)!

n! =
n

∏
i=1

i



Permutations
How do we determine its asymptotic growth?





Use Logarithms!

n! =
n

∏
i=1

i



Permutations
• Approximation of the factorial


     Use        


Use an integral!

log n! =
n

∑
i=1

log(i)



Permutations
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∑
i=1

log i



Permutations

    


                 


                 


                 

log(n!) =
n

∑
i=1

log(i)

≈ ∫
n

i=1
log(x)dx

= [x log x − x]n
1

= n log(n) − n + 1



Permutations
Therefore


       


            


            


            

n! ≈ exp(n log(n) − n − 1)

= exp(log(nn) − n + 1)

= nn ⋅ e−n ⋅ e

= e ⋅ ( n
e )

n



Permutations



Permutations
An analysis of the error substituting the Riemann sum for an 
integral gives Stirling’s approximation (invented by de 
Moivre)

                   






Sorting by Comparison
• Many sorting algorithms use comparisons


• An algorithm needs to be able to sort with all orders of 
inputs, i.e. distinguish between  arrangements of the 
input by order 


• assuming all elements are different

n!



Sorting by Comparison
• Sorting algorithm makes a comparison, then decides on 

what to do


• These algorithms can be represented as a binary tree



Sorting by Comparison
a1 < a2

a1 < a3a2 < a3

a1 < a2 < a3

yes no

yes

a1 < a3

no

a1 < a3 < a2

yes

a3 < a1 < a2

no

a2 < a1 < a3

yes

a2 < a3

no

a2 < a3 < a1

yes

a3 < a2 < a1

no

A fictitious algorithm for sorting three elements 
as a Decision Tree



Sorting by Comparison
• Represent any comparison based algorithm by such a 

tree


• Any run of the algorithm represents a path from the root 
to a leaf node


• Leaf nodes represent an algorithm finishing.


• Each leaf represents an ordering of the array


• So, there are at least  of them for an array of  
elements

n! n



Sorting by Comparison
• How many leaves does a tree with  leaves have?


• A tree of height  has how many leaves?


• Height 0: only root, one leaf


• Height 1: only root plus one or two leaves:  


• Height 2: at most two nodes at height one have at most 
 leaves


• Induction: Height  has at most  leaves 

N

h

≤ 2

≤ 22

h 2h



Sorting by Comparison
• Relationship between height of decision tree and number of 

elements to be sorted:


• Need to have at least  leaves:


•    


• which implies


• 


•     


•     

n!

2h ≥ n!

h ≥ log2(n!) =
1

log(2)
log(n!)

≈
1

log(2)
n log(n) − n + 1

= Θ(n log(n))



Sorting by Comparison
• Since the height of the decision tree is the worst time 

runtime, we have


• The runtime of a comparison based sorting algorithm is 
at best Θ(n log(n))



Linear Time Sorting
• In order to do better:


• Needs to exploit special inputs


• In fact:


• Sorting integers can be done in linear time



Linear Time Sorting
• Counting sort


• Assume we want to sort numbers in 


• Create a dictionary with keys in 


• E.g. as an array Int(1:k) 

• Walk through the array, updating the count


• Once the count is done, go through the dictionary in 
order of the keys, emitting as many keys as the count

{1,2,…, k − 1,k}

{1,2,…, k − 1,k}



Linear Time Sorting
• Counting sort:


• 


• create a counting array:


• 


• Walk through the array and calculate counts


• 


• Emit keys according to count


• 1 2 2 2 3 3 3 4 4 5 5 7 8 9 10 10 10 12

10 12 443 3 28 9 55 2 10 1 2 710

1: 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: 12: 13:

1: 1 2: 3 3: 3 4: 2 5: 2 6: 0 7: 1 8: 1 9: 1 10: 3 11: 0 12: 1 13: 0



Linear Time Sorting
• If there are  elements in the array, then counting sort 

uses 


•   to create and evaluate the counting array


•   to update the counting array


• Therefore:  counting sort run-time is 

n

∼ k

∼ n

Θ(n + k)



Linear Time Sorting
• Radix Sort


• Imagine sorting punch cards with by ID in the first 
columns



Linear Time Sorting
• Simple Method:


• Create heaps of cards based on the first digit


• Then recursively sort the heaps



Linear Time Sorting
• Better method:


• Sort according to the last digit


• Then use a stable sort to sort after the second-last 
digit


• Then use a stable sort to sort after the third-last digit



Linear Time Sorting
• Stable sort:


• Leave order of elements with the same key during 
sorting


• Insertion sort, merge sort, bubble sort, counting sort 
are all stable


• Heap sort, selection sort, shell sort, and quick sort are 
not



Linear Time Sorting
• Radix sort:


• for i in range(length(key), 0, -1): 
       stable_sort on digit i of key 



Linear Time Sorting
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Linear Time Sorting
• Radix sort correctness


• What would be a loop invariant?



Linear Time Sorting
• Assume  keys of  digits in 


• Use counting sort to sort in time 


• Radix sort then takes  time

n d {0,1,…, r − 1}

Θ(n + r)

Θ(d(n + r))



Linear Time Sorting
• Given  numbers of  bits each


• Assume 


• Choose .


• Divide the -bit numbers into “digits” of length 


• Thus, each round of radix sort takes time 


• There are  rounds


• So, radix sort takes  time!

n b

b = O(log(n))

r = ⌊log2(n)⌋

b r

Θ(n + 2r)

⌈
b
r

⌉

Θ(
b
r

(n + 2r)) = Θ(
b
r

(n + n)) = Θ(n)



Selection



Selection Problems
• Given an unordered array:


• Find the -largest (-smallest) element in an unordered 
array


• Naïve Solution:


• Sort (usually in time  )


• Pick element  or  of the sorted array

k

Θ(n log n)

n − k k



Selection Problem
• Finding the maximum


• Finding the maximum and minimum at the same time


• Finding the th largest element


• Finding the median

k



Maximum
• Obvious algorithm:


•  comparisonsn − 1

def max(array): 
   result = array[0] 
   for i in range(1, len(array)): 
      if array[i]>result: 
         result = array[i] 
       
      



Maximum
• Toy algorithm:


• Partition array into  pairs.


• (There might be an additional element).


• Use one comparison in order to select the largest of 
each pair (plus the odd one out if exists)


• These form an array of length 


• Recursively call the toy algorithm

⌊n/2⌋

⌊n/2⌋ + 1



Maximum
• What is the recurrence relation?



Maximum
• 


• T(2) = 1


• Now use substitution to get an idea of solving the recurrence

T(n) = T(n − ⌊n/2⌋) + ⌊n/2⌋



Maximum
• Assume  is a power of 2n



Maximum
• Recurrence then becomes 


• 


•         


•         


•                 


•          


•          

T(n) = T(n/2) + n/2, T(2) = 1

= T(n/4) + n/4 + n/2

= T(n/8) + n/8 + n/4 + n/2

…

= T(2) + 2 + 4 + 8 + … + n/8 + n/4 + n/2

= n − 1



Maximum
• Now prove by induction for all 


• 


•

n ∈ ℕ

T(n) = T(n − ⌊n/2⌋) + ⌊n/2⌋

T(2) = 1



Maximum
• Induction Hypothesis:   if .


•  


• 


• 


•

T(m) = m − 1 m < n

T(n)

= T(n − ⌊n/2⌋) + ⌊n/2⌋

= n − ⌊n/2⌋ − 1 + ⌊n/2⌋

= n − 1



Maximum
• In fact:


•  Theorem:  Finding the maximum of an array of length  
costs at least  comparisons 

• Proof: Place all elements into three buckets:


• One for not-looked at


• One for won all comparisons


• One for lost all comparisons

n
n − 1



Maximum

• A single comparison can involves 6 cases


• X-X:  move two elements from X, one into W, one into L


• X-W: move one element from X into W or move one element from X 
into W and one from W into L


• X-L: move one element from X into W or one into L


• W-W: move one element from W to L


• W-L: nothing or move one element from W to L


• L-L: nothing

W LX



Maximum
• To have finished the algorithm:


• No elements left in X


• Only one element left in W


• Otherwise, can construct counterexample

W LX



Maximum
• One left in X:  could be the maximum


• Two (or more) left in W:


• Which one is the maximum?

W LX

W LX



Maximum
• Each comparison sends at most one element to 


• At best,  comparisons

L

n − 1



Combined Maximum and 
Minimum

• Combined Maximum and Minimum


• Naïve algorithm:


• Calculate the max, then the min (can exclude the 
max)


•  comparisonsm − 1 + m − 2 = 2m − 3



Combined Maximum and 
Minimum

• A better algorithm


• Divide the array into pairs 


• Compare the values of each pair


• Place the winner of each pair in one array, the looser of 
each array in a second array


• (Or use swapping so that the winners are in even 
position and the losers are in odd positions)


• Now use maximum and minimum on the two sub-
arrays



Combined Maximum and 
Minimum

• Case 1:  is even


• There are  pairs or  comparisons


• Run maximum on even indexed array elements


• This gives us  comparisons


• Same for minimum


• Total is  comparisons

n

n/2 n/2

n/2 − 1

n/2 + n/2 − 1 + n/2 − 1 =
3n
2

− 2

compare 
and swap

compare 
and swap

compare 
and swap

compare 
and swap

compare 
and swap

compare 
and swap

compare 
and swap

compare 
and swap

compare 
and swap

compare 
and swap

compare 
and swap

compare 
and swap



Combined Maximum and 
Minimum

• Case:  is odd


• Run algorithm on the first  elements


•  comparisons


• Then add two comparisons to see whether the last 
element is either minimum or maximum


• Total of  comparisons

n

n − 1
3n − 3

2
− 2

3n − 3
2



Combined Maximum and 
Minimum

• Can we do better?


• Use a more sophisticated bin method


• X - not looked at, W - won every comparison, L - lost 
every comparison, Q - at least one win and at least one 
loss

W LX Q



Combined Maximum and 
Minimum

• To be successful, need to move everything out of X and 
have only one element in W and L


• Otherwise can have a counter-example

W LX Q



Combined Maximum and 
Minimum

• Just counting the moves is not sufficient


• Example: 


• We compare an element  with an element 


• Possibly:   


• And we move both elements to the  bucket


• So, possible to move all  elements out of  into  in 
 comparisons and  elements out of  into  

in  comparisons


• Only gives  moves!

w ∈ W l ∈ L

w < l

Q

n X W ∪ L
n/2 n − 2 W ∪ L Q

n/2 − 1

n − 1



Combined Maximum 
and Minimum

• Use an adversary argument


• Algorithm can only depend on the knowledge of the previous 
comparisons when making a decision


• An adversary is allowed to change all values as long as the results 
of the comparisons stay the same


• If  and , then the only thing the algorithm knows is 
that  has won all of its comparisons and  has lost all of its 
comparisons


• Adversary therefore is allowed to change the value of  
downward 


• Adversary guarantees that .

w ∈ W l ∈ L
w l

l

w > l



Combined Maximum 
and Minimum

• With the help of the adversary who substitutes values 
when needed


• Potential:  


• Calculate net changes for comparisons between 
buckets

3
2

|X | + |W | + |L |



Combined Maximum 
and Minimum

• Compare X with X


• Net change (-2, 1, 1, 0) 


• Potential change:  1



Combined Maximum 
and Minimum

• Compare X with W


• Case 1:    Net change (-1,0,1,0)


• Case 2:   Net change(-1,0,0,1)


• The adversary can prevent Case 2 by decreasing  


• Possible because this is the first time that we look at 



• Potential changes by 

x ∈ X, w ∈ W, x < w

x ∈ X, w ∈ W, x > w

x

x
1
2



Combined Maximum 
and Minimum

• Compare  with 


• similar as before

X L



Combined Maximum 
and Minimum

• Compare  with 


• The element in  changes to either  or 


• Net change (-1, 1, 0, 0) or (-1, 0, 1, 0 )


• Potential change 

X Q

X W L

1
2



Combined Maximum 
and Minimum

• Compare W with W


• One element looses


• Net change (0, -1, 0, 1)


• Potential change 1



Combined Maximum 
and Minimum

• Compare  with 


• Adversary guarantees that the element in  wins by 
making all of them bigger


• This works because each element in  has only seen 
wins and that does not change if the elements are 
made bigger.


• No change

W L

W

W



Combined Maximum 
and Minimum

• Compare  with 


• Since the elements in  have always won, the 
adversary can make them larger


• No net change

W Q

W



Combined Maximum 
and Minimum

• Comparisons with  are the same as with 


• Comparisons within  are useless, but make no changes

L W

Q



Combined Maximum 
and Minimum

• With the help of the adversary


• Potential changes by at most 1


• Initial Potential:  


• Final Potential:  


• Need at least  comparisons

3
2

n

2
3n − 4

2



Selection
• Find the th largest element


• Algorithm 1: Use the idea of quicksort


• Find a random pivot and partition around it


• Now use recursion:


• If  find the th largest element in 


• If , select 


• If , find the  largest element in 

k

k ≤ len(A>p) k A>p

k = len(A>p) + 1 p

k > len(A>p) k− len(A<p) − 1 A<p

A<p A>p



Selection
• Worst case behavior:


• Pivot is always the maximum


• Search in array of length one less


• Partitioning an array of length takes  time


• Worst time: 


• 


•

Θ(n)

∼ n + (n − 1) + (n − 2) + … + 2 + 1

=
n(n + 1)

2
= Θ(n2)



Selection
• Expected behavior:


• Let  be the expected run-time on input array 


• How does the pivot fall in an array?

T(n) n



Selection

• Call either  or  or are done


• Bad luck assumption:  


• its always the one for the larger array


• All positions of the pivot are equally probable

T(k) T(l) = T(n − k − 1)

P

k l



Selection
• Gives a recurrence


• 


• where  is the costs of partitioning


• Now assume that 

T(n) ≤ 2
n−1

∑
i=⌊n/2⌋

1
n

T(i) + dn

dn

T(n) ≤ cn



Selection
Then:


          


                 


                 


                

T(n) ≤
2
n

n−1

∑
i=⌊n/2⌋

1
n

T(i) + dn

≤
2c
n (

n−1

∑
i=1

i −
⌊n/2⌋

∑
i=1

i) + dn

=
2c
n ( (n − 1)n

2
−

(⌊n/2⌋ − 1)⌊n/2⌋
2 ) + dn

≤
2c
n ( (n − 1)n

2
−

(n/2 − 2)(n/2 − 1)
2 ) + dn



Selection









≤
2c
n ( (n − 1)n

2
−

(n/2 − 2)(n/2 − 1)
2 ) + dn

=
2c
n ( n2 − n

2
−

n2/4 − 3n/2 + 2
2 ) + dn

=
c
n ( 3n2

4
+

n
2

− 2) + dn

= c(
3n
4

+
1
2

−
2
n

) + dn



Selection






         which is  cn if and only if


= c(
3n
4

+
1
2

−
2
n

) + dn

= cn − ( cn
4

−
c
2

− dn)
≤



Selection
                    


           


           


If we assume , then the right side is at most 


Thus, if  then the previous calculation goes through


cn
4

−
c
2

− dn ≥ 0

⟺ cn ≥ 2c + 4dn

⟺ c ≥ 2c/n + 4d

n ≥ 4
c
2

+ 4d

c > 8d



Selection
• We have shown 


•  if  and 


• Make C larger if necessary to obtain 


• 


• Then: Induction base works and Induction hypothesis 
works. 


• So: expected runtime is linear


• But: we can do better

T(n) < Cn n ≥ 4 C ≥ 8d

T(1) ≤ C, T(2) ≤ 2C, T(3) ≤ 3C, T(4) ≤ 4C



Selection
• Linear worst case selection


• Idea:  Improve the selection of the pivot!


• Need to take at most linear time for the pivot selection



Selection
• Divide the  elements of the input array into  

groups of five elements and possibly one additional group


• In each group, choose the median (middle element)


• In the last one, you might need to break a tie


• Then select the median of the medians by recurrence

n ⌊n/5⌋



Selection
• Show that the median of medians divides the array fairly 

well


• Show that adding up the costs, we still are linear



Selection
• About half the medians are below the median of medians


• About half the medians are atop of the median of medians


• This allows us to guarantee that a certain number of 
elements is below and a certain number of elements is 
above the median of medians



Selection

below

above

A number of elements are below and above  
the median of medians for sure.



Selection
• At least half of the medians are greater or equal than the 

median of medians


• At least half of the  contributes at least three elements 
that are larger 


• Discard the group that is smaller and the group with the 
median of median


• The number of elements larger than the median of medians 
is at least 


•

⌈n/5⌉

3 (⌈
1
2

⌈
n
5

⌉⌉ − 2)



Selection

•   larger than the median of 

medians


•   smaller than the median 

of medians

3 (⌈
1
2

⌈
n
5

⌉⌉ − 2) ≥
3n
10

− 6

3 (⌈
1
2

⌈
n
5

⌉⌉ − 2) ≥
3n
10

− 6



Selection
•  run time of the algorithm


• Division into groups of five:  


• Determination of the medians:   because there are  
groups and we sort them in constant time to get the median


• Determination of the median of median by recurrence 



• Partitioning around the median of medians 


• Recursive call on at most  =  elements

T(n)

Θ(n)

Θ(n) Θ(n)

T(⌈
n
5

⌉)

Θ(n)

n −
3n
10

− 6
7n
10

+ 6



Selection
• Total runtime:


• 


• Show that this is linear using induction / substitution


• Again: induction step only needs to work for large enough 

T(n) ≤ T(⌈
n
5

⌉) + T(0.7n + 6) + an

n



Selection



        


This is at most  if and only if .


Since , we assume 

 so that  needs to be larger than .


T(n) ≤ c(
n
5

+ 1) + c(
7n
10

+ 6) + an

= 0.9cn + 7c + an

cn 7c + an ≤ 0.1cn

7c + an ≤ 0.1cn ⟺
70
n

c + 10a ≤ c

n > 140 c 20a



Selection
• We also need to make  larger than , , , 




• Then we have an induction base on 140 values


• And an induction step that works


• So 

c T(1) T(2)/2 …
T(140)/140

T(n) ≤ cn



Selection
• This algorithm makes no assumptions on the input


• Unlike our results on linear sorting


