
Sorting
and

Element Selection
Thomas Schwarz, SJ

Permutations
• A permutation of the set is a reordering of the

numbers where each number between 1 and n appears
exactly once.

{1,2,…, n}

Permutations
• How many permutations are there?

• Use recurrence!

• In a permutation of , where is the
located?

• There are other numbers.

• This gives us gaps and spots before and after

{1,2,…, n} n

n − 1

n − 2

a1 a2 a3 a4 a5

Permutations
• Let be the number of permutations of elements

• This gives us the recurrence

•

• which can be unfolded very simply

•

n! n

n! = n ⋅ (n − 1)!

n! =
n

∏
i=1

i

Permutations
How do we determine its asymptotic growth?

Use Logarithms!

n! =
n

∏
i=1

i

Permutations
• Approximation of the factorial

 Use

Use an integral!

log n! =
n

∑
i=1

log(i)

Permutations

0 5 10 15 20
i0.0

0.5

1.0

1.5

2.0

2.5

3.0

log(i)

n−1

∑
i=1

log(i) < ∫
n

1
log(x)dx <

n

∑
i=1

log i

Permutations

log(n!) =
n

∑
i=1

log(i)

≈ ∫
n

i=1
log(x)dx

= [x log x − x]n
1

= n log(n) − n + 1

Permutations
Therefore

n! ≈ exp(n log(n) − n − 1)

= exp(log(nn) − n + 1)

= nn ⋅ e−n ⋅ e

= e ⋅ (n
e)

n

Permutations

Permutations
An analysis of the error substituting the Riemann sum for an
integral gives Stirling’s approximation (invented by de
Moivre)

Sorting by Comparison
• Many sorting algorithms use comparisons

• An algorithm needs to be able to sort with all orders of
inputs, i.e. distinguish between arrangements of the
input by order

• assuming all elements are different

n!

Sorting by Comparison
• Sorting algorithm makes a comparison, then decides on

what to do

• These algorithms can be represented as a binary tree

Sorting by Comparison
a1 < a2

a1 < a3a2 < a3

a1 < a2 < a3

yes no

yes

a1 < a3

no

a1 < a3 < a2

yes

a3 < a1 < a2

no

a2 < a1 < a3

yes

a2 < a3

no

a2 < a3 < a1

yes

a3 < a2 < a1

no

A fictitious algorithm for sorting three elements
as a Decision Tree

Sorting by Comparison
• Represent any comparison based algorithm by such a

tree

• Any run of the algorithm represents a path from the root
to a leaf node

• Leaf nodes represent an algorithm finishing.

• Each leaf represents an ordering of the array

• So, there are at least of them for an array of
elements

n! n

Sorting by Comparison
• How many leaves does a tree with leaves have?

• A tree of height has how many leaves?

• Height 0: only root, one leaf

• Height 1: only root plus one or two leaves:

• Height 2: at most two nodes at height one have at most
 leaves

• Induction: Height has at most leaves

N

h

≤ 2

≤ 22

h 2h

Sorting by Comparison
• Relationship between height of decision tree and number of

elements to be sorted:

• Need to have at least leaves:

•

• which implies

•

•

•

n!

2h ≥ n!

h ≥ log2(n!) =
1

log(2)
log(n!)

≈
1

log(2)
n log(n) − n + 1

= Θ(n log(n))

Sorting by Comparison
• Since the height of the decision tree is the worst time

runtime, we have

• The runtime of a comparison based sorting algorithm is
at best Θ(n log(n))

Linear Time Sorting
• In order to do better:

• Needs to exploit special inputs

• In fact:

• Sorting integers can be done in linear time

Linear Time Sorting
• Counting sort

• Assume we want to sort numbers in

• Create a dictionary with keys in

• E.g. as an array Int(1:k)

• Walk through the array, updating the count

• Once the count is done, go through the dictionary in
order of the keys, emitting as many keys as the count

{1,2,…, k − 1,k}

{1,2,…, k − 1,k}

Linear Time Sorting
• Counting sort:

•

• create a counting array:

•

• Walk through the array and calculate counts

•

• Emit keys according to count

• 1 2 2 2 3 3 3 4 4 5 5 7 8 9 10 10 10 12

10 12 443 3 28 9 55 2 10 1 2 710

1: 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: 12: 13:

1: 1 2: 3 3: 3 4: 2 5: 2 6: 0 7: 1 8: 1 9: 1 10: 3 11: 0 12: 1 13: 0

Linear Time Sorting
• If there are elements in the array, then counting sort

uses

• to create and evaluate the counting array

• to update the counting array

• Therefore: counting sort run-time is

n

∼ k

∼ n

Θ(n + k)

Linear Time Sorting
• Radix Sort

• Imagine sorting punch cards with by ID in the first
columns

Linear Time Sorting
• Simple Method:

• Create heaps of cards based on the first digit

• Then recursively sort the heaps

Linear Time Sorting
• Better method:

• Sort according to the last digit

• Then use a stable sort to sort after the second-last
digit

• Then use a stable sort to sort after the third-last digit

Linear Time Sorting
• Stable sort:

• Leave order of elements with the same key during
sorting

• Insertion sort, merge sort, bubble sort, counting sort
are all stable

• Heap sort, selection sort, shell sort, and quick sort are
not

Linear Time Sorting
• Radix sort:

• for i in range(length(key), 0, -1):
 stable_sort on digit i of key

Linear Time Sorting
135

242

122

023

220

144

321

221

203

302 135

242

122

023

220

144

321

221

203

302

135

242

122

023

220

144

321

221

203

302

135

242

122

023

220

144

321

221

203

302

Linear Time Sorting
• Radix sort correctness

• What would be a loop invariant?

Linear Time Sorting
• Assume keys of digits in

• Use counting sort to sort in time

• Radix sort then takes time

n d {0,1,…, r − 1}

Θ(n + r)

Θ(d(n + r))

Linear Time Sorting
• Given numbers of bits each

• Assume

• Choose .

• Divide the -bit numbers into “digits” of length

• Thus, each round of radix sort takes time

• There are rounds

• So, radix sort takes time!

n b

b = O(log(n))

r = ⌊log2(n)⌋

b r

Θ(n + 2r)

⌈
b
r

⌉

Θ(
b
r

(n + 2r)) = Θ(
b
r

(n + n)) = Θ(n)

Selection

Selection Problems
• Given an unordered array:

• Find the -largest (-smallest) element in an unordered
array

• Naïve Solution:

• Sort (usually in time)

• Pick element or of the sorted array

k

Θ(n log n)

n − k k

Selection Problem
• Finding the maximum

• Finding the maximum and minimum at the same time

• Finding the th largest element

• Finding the median

k

Maximum
• Obvious algorithm:

• comparisonsn − 1

def max(array):
 result = array[0]
 for i in range(1, len(array)):
 if array[i]>result:
 result = array[i]

Maximum
• Toy algorithm:

• Partition array into pairs.

• (There might be an additional element).

• Use one comparison in order to select the largest of
each pair (plus the odd one out if exists)

• These form an array of length

• Recursively call the toy algorithm

⌊n/2⌋

⌊n/2⌋ + 1

Maximum
• What is the recurrence relation?

Maximum
•

• T(2) = 1

• Now use substitution to get an idea of solving the recurrence

T(n) = T(n − ⌊n/2⌋) + ⌊n/2⌋

Maximum
• Assume is a power of 2n

Maximum
• Recurrence then becomes

•

•

•

•

•

•

T(n) = T(n/2) + n/2, T(2) = 1

= T(n/4) + n/4 + n/2

= T(n/8) + n/8 + n/4 + n/2

…

= T(2) + 2 + 4 + 8 + … + n/8 + n/4 + n/2

= n − 1

Maximum
• Now prove by induction for all

•

•

n ∈ ℕ

T(n) = T(n − ⌊n/2⌋) + ⌊n/2⌋

T(2) = 1

Maximum
• Induction Hypothesis: if .

•

•

•

•

T(m) = m − 1 m < n

T(n)

= T(n − ⌊n/2⌋) + ⌊n/2⌋

= n − ⌊n/2⌋ − 1 + ⌊n/2⌋

= n − 1

Maximum
• In fact:

• Theorem: Finding the maximum of an array of length
costs at least comparisons

• Proof: Place all elements into three buckets:

• One for not-looked at

• One for won all comparisons

• One for lost all comparisons

n
n − 1

Maximum

• A single comparison can involves 6 cases

• X-X: move two elements from X, one into W, one into L

• X-W: move one element from X into W or move one element from X
into W and one from W into L

• X-L: move one element from X into W or one into L

• W-W: move one element from W to L

• W-L: nothing or move one element from W to L

• L-L: nothing

W LX

Maximum
• To have finished the algorithm:

• No elements left in X

• Only one element left in W

• Otherwise, can construct counterexample

W LX

Maximum
• One left in X: could be the maximum

• Two (or more) left in W:

• Which one is the maximum?

W LX

W LX

Maximum
• Each comparison sends at most one element to

• At best, comparisons

L

n − 1

Combined Maximum and
Minimum

• Combined Maximum and Minimum

• Naïve algorithm:

• Calculate the max, then the min (can exclude the
max)

• comparisonsm − 1 + m − 2 = 2m − 3

Combined Maximum and
Minimum

• A better algorithm

• Divide the array into pairs

• Compare the values of each pair

• Place the winner of each pair in one array, the looser of
each array in a second array

• (Or use swapping so that the winners are in even
position and the losers are in odd positions)

• Now use maximum and minimum on the two sub-
arrays

Combined Maximum and
Minimum

• Case 1: is even

• There are pairs or comparisons

• Run maximum on even indexed array elements

• This gives us comparisons

• Same for minimum

• Total is comparisons

n

n/2 n/2

n/2 − 1

n/2 + n/2 − 1 + n/2 − 1 =
3n
2

− 2

compare
and swap

compare
and swap

compare
and swap

compare
and swap

compare
and swap

compare
and swap

compare
and swap

compare
and swap

compare
and swap

compare
and swap

compare
and swap

compare
and swap

Combined Maximum and
Minimum

• Case: is odd

• Run algorithm on the first elements

• comparisons

• Then add two comparisons to see whether the last
element is either minimum or maximum

• Total of comparisons

n

n − 1
3n − 3

2
− 2

3n − 3
2

Combined Maximum and
Minimum

• Can we do better?

• Use a more sophisticated bin method

• X - not looked at, W - won every comparison, L - lost
every comparison, Q - at least one win and at least one
loss

W LX Q

Combined Maximum and
Minimum

• To be successful, need to move everything out of X and
have only one element in W and L

• Otherwise can have a counter-example

W LX Q

Combined Maximum and
Minimum

• Just counting the moves is not sufficient

• Example:

• We compare an element with an element

• Possibly:

• And we move both elements to the bucket

• So, possible to move all elements out of into in
 comparisons and elements out of into

in comparisons

• Only gives moves!

w ∈ W l ∈ L

w < l

Q

n X W ∪ L
n/2 n − 2 W ∪ L Q

n/2 − 1

n − 1

Combined Maximum
and Minimum

• Use an adversary argument

• Algorithm can only depend on the knowledge of the previous
comparisons when making a decision

• An adversary is allowed to change all values as long as the results
of the comparisons stay the same

• If and , then the only thing the algorithm knows is
that has won all of its comparisons and has lost all of its
comparisons

• Adversary therefore is allowed to change the value of
downward

• Adversary guarantees that .

w ∈ W l ∈ L
w l

l

w > l

Combined Maximum
and Minimum

• With the help of the adversary who substitutes values
when needed

• Potential:

• Calculate net changes for comparisons between
buckets

3
2

|X | + |W | + |L |

Combined Maximum
and Minimum

• Compare X with X

• Net change (-2, 1, 1, 0)

• Potential change: 1

Combined Maximum
and Minimum

• Compare X with W

• Case 1: Net change (-1,0,1,0)

• Case 2: Net change(-1,0,0,1)

• The adversary can prevent Case 2 by decreasing

• Possible because this is the first time that we look at

• Potential changes by

x ∈ X, w ∈ W, x < w

x ∈ X, w ∈ W, x > w

x

x
1
2

Combined Maximum
and Minimum

• Compare with

• similar as before

X L

Combined Maximum
and Minimum

• Compare with

• The element in changes to either or

• Net change (-1, 1, 0, 0) or (-1, 0, 1, 0)

• Potential change

X Q

X W L

1
2

Combined Maximum
and Minimum

• Compare W with W

• One element looses

• Net change (0, -1, 0, 1)

• Potential change 1

Combined Maximum
and Minimum

• Compare with

• Adversary guarantees that the element in wins by
making all of them bigger

• This works because each element in has only seen
wins and that does not change if the elements are
made bigger.

• No change

W L

W

W

Combined Maximum
and Minimum

• Compare with

• Since the elements in have always won, the
adversary can make them larger

• No net change

W Q

W

Combined Maximum
and Minimum

• Comparisons with are the same as with

• Comparisons within are useless, but make no changes

L W

Q

Combined Maximum
and Minimum

• With the help of the adversary

• Potential changes by at most 1

• Initial Potential:

• Final Potential:

• Need at least comparisons

3
2

n

2
3n − 4

2

Selection
• Find the th largest element

• Algorithm 1: Use the idea of quicksort

• Find a random pivot and partition around it

• Now use recursion:

• If find the th largest element in

• If , select

• If , find the largest element in

k

k ≤ len(A>p) k A>p

k = len(A>p) + 1 p

k > len(A>p) k− len(A<p) − 1 A<p

A<p A>p

Selection
• Worst case behavior:

• Pivot is always the maximum

• Search in array of length one less

• Partitioning an array of length takes time

• Worst time:

•

•

Θ(n)

∼ n + (n − 1) + (n − 2) + … + 2 + 1

=
n(n + 1)

2
= Θ(n2)

Selection
• Expected behavior:

• Let be the expected run-time on input array

• How does the pivot fall in an array?

T(n) n

Selection

• Call either or or are done

• Bad luck assumption:

• its always the one for the larger array

• All positions of the pivot are equally probable

T(k) T(l) = T(n − k − 1)

P

k l

Selection
• Gives a recurrence

•

• where is the costs of partitioning

• Now assume that

T(n) ≤ 2
n−1

∑
i=⌊n/2⌋

1
n

T(i) + dn

dn

T(n) ≤ cn

Selection
Then:

T(n) ≤
2
n

n−1

∑
i=⌊n/2⌋

1
n

T(i) + dn

≤
2c
n (

n−1

∑
i=1

i −
⌊n/2⌋

∑
i=1

i) + dn

=
2c
n ((n − 1)n

2
−

(⌊n/2⌋ − 1)⌊n/2⌋
2) + dn

≤
2c
n ((n − 1)n

2
−

(n/2 − 2)(n/2 − 1)
2) + dn

Selection

≤
2c
n ((n − 1)n

2
−

(n/2 − 2)(n/2 − 1)
2) + dn

=
2c
n (n2 − n

2
−

n2/4 − 3n/2 + 2
2) + dn

=
c
n (3n2

4
+

n
2

− 2) + dn

= c(
3n
4

+
1
2

−
2
n

) + dn

Selection

 which is cn if and only if

= c(
3n
4

+
1
2

−
2
n

) + dn

= cn − (cn
4

−
c
2

− dn)
≤

Selection

If we assume , then the right side is at most

Thus, if then the previous calculation goes through

cn
4

−
c
2

− dn ≥ 0

⟺ cn ≥ 2c + 4dn

⟺ c ≥ 2c/n + 4d

n ≥ 4
c
2

+ 4d

c > 8d

Selection
• We have shown

• if and

• Make C larger if necessary to obtain

•

• Then: Induction base works and Induction hypothesis
works.

• So: expected runtime is linear

• But: we can do better

T(n) < Cn n ≥ 4 C ≥ 8d

T(1) ≤ C, T(2) ≤ 2C, T(3) ≤ 3C, T(4) ≤ 4C

Selection
• Linear worst case selection

• Idea: Improve the selection of the pivot!

• Need to take at most linear time for the pivot selection

Selection
• Divide the elements of the input array into

groups of five elements and possibly one additional group

• In each group, choose the median (middle element)

• In the last one, you might need to break a tie

• Then select the median of the medians by recurrence

n ⌊n/5⌋

Selection
• Show that the median of medians divides the array fairly

well

• Show that adding up the costs, we still are linear

Selection
• About half the medians are below the median of medians

• About half the medians are atop of the median of medians

• This allows us to guarantee that a certain number of
elements is below and a certain number of elements is
above the median of medians

Selection

below

above

A number of elements are below and above
the median of medians for sure.

Selection
• At least half of the medians are greater or equal than the

median of medians

• At least half of the contributes at least three elements
that are larger

• Discard the group that is smaller and the group with the
median of median

• The number of elements larger than the median of medians
is at least

•

⌈n/5⌉

3 (⌈
1
2

⌈
n
5

⌉⌉ − 2)

Selection

• larger than the median of

medians

• smaller than the median

of medians

3 (⌈
1
2

⌈
n
5

⌉⌉ − 2) ≥
3n
10

− 6

3 (⌈
1
2

⌈
n
5

⌉⌉ − 2) ≥
3n
10

− 6

Selection
• run time of the algorithm

• Division into groups of five:

• Determination of the medians: because there are
groups and we sort them in constant time to get the median

• Determination of the median of median by recurrence

• Partitioning around the median of medians

• Recursive call on at most = elements

T(n)

Θ(n)

Θ(n) Θ(n)

T(⌈
n
5

⌉)

Θ(n)

n −
3n
10

− 6
7n
10

+ 6

Selection
• Total runtime:

•

• Show that this is linear using induction / substitution

• Again: induction step only needs to work for large enough

T(n) ≤ T(⌈
n
5

⌉) + T(0.7n + 6) + an

n

Selection

This is at most if and only if .

Since , we assume

 so that needs to be larger than .

T(n) ≤ c(
n
5

+ 1) + c(
7n
10

+ 6) + an

= 0.9cn + 7c + an

cn 7c + an ≤ 0.1cn

7c + an ≤ 0.1cn ⟺
70
n

c + 10a ≤ c

n > 140 c 20a

Selection
• We also need to make larger than , , ,

• Then we have an induction base on 140 values

• And an induction step that works

• So

c T(1) T(2)/2 …
T(140)/140

T(n) ≤ cn

Selection
• This algorithm makes no assumptions on the input

• Unlike our results on linear sorting

