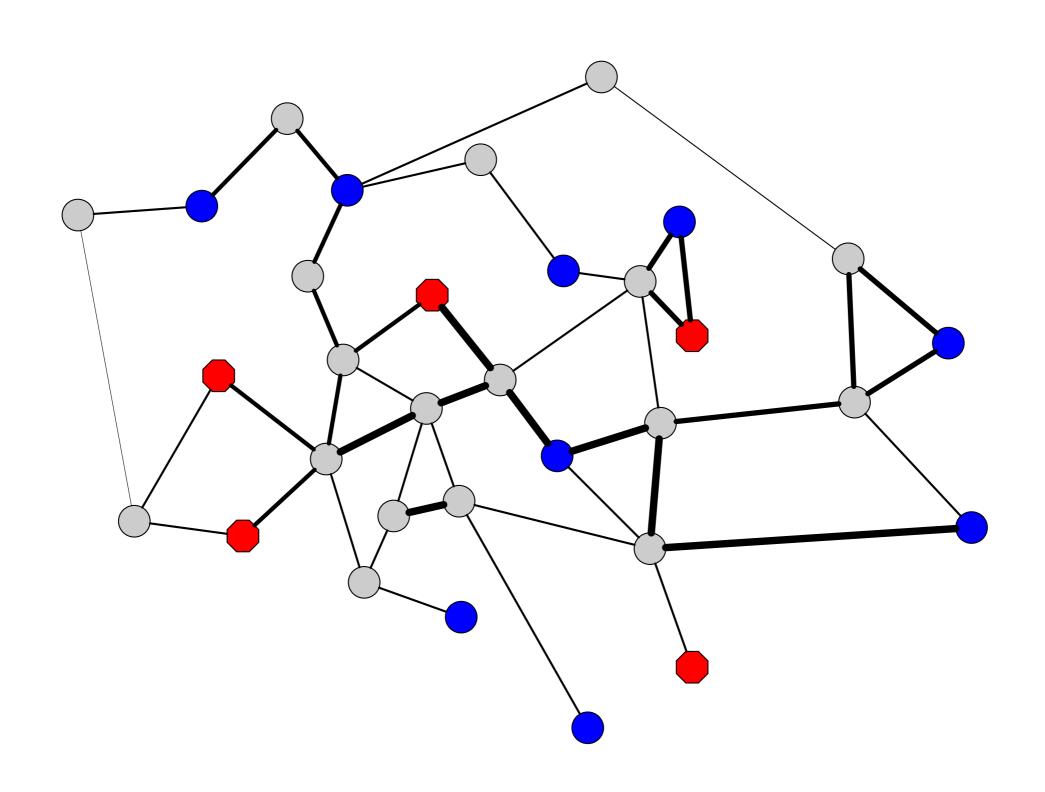
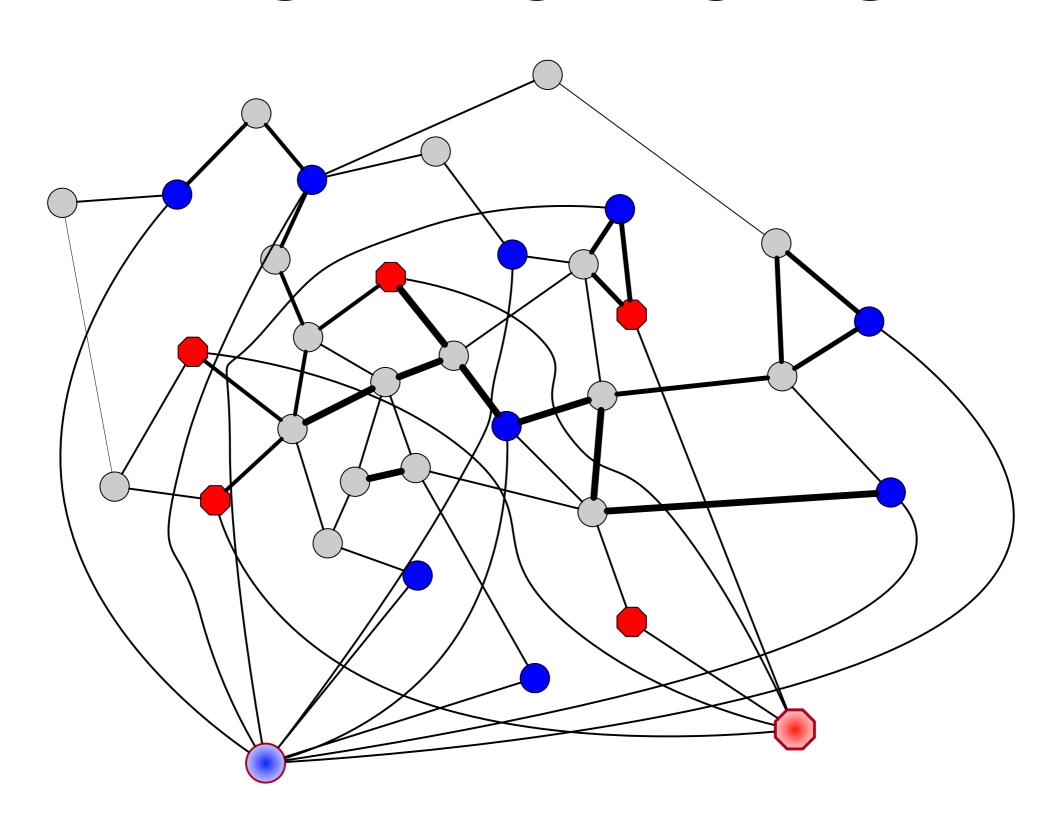
Maximum Flow Problems

Thomas Schwarz, SJ

- Assume we have several power generators and several large consumers of power
- Transmission grid has limited capacity
- Power generators have maximum power generation
- Consumers have maximum power consumption
- Transmission lines have limited capacity
- What is the maximum amount of power that can be moved from generators to consumers?



- Create a super-source node and a super-consumer
- Connect all generators to the super source with a transmission capacity equal to the power source
- Connect all consumers to the super-consumer with a transmission capacity equal to the maximum demand



- Question becomes:
 - What is the maximum flow from producer to consumer?

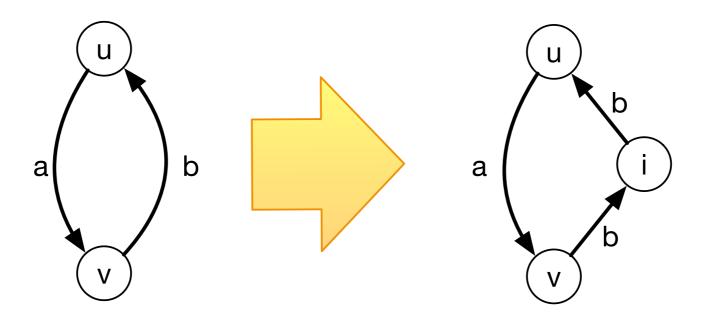
- Flow networks:
 - Directed graph (*V*, *E*)
 - Each edge (u, v) has a capacity of c(u, v)
 - Two special nodes: s (source), t (sink)
 - Can remove nodes that do not lie on a path from s to t
 - A flow is a function $f: V \times V \to \mathbb{R}$, $u, v \mapsto f(u, v)$
 - $\forall u, v, \in V: 0 \le f(u, v) \le c(u, v)$
 - $\forall u \in V \setminus \{s, t\} : \sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v) \text{ (influx = outflux)}$

The maximum flow problem:

Maximize
$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$

 Typically, a flow network will have no edges into the source and the second addend is zero

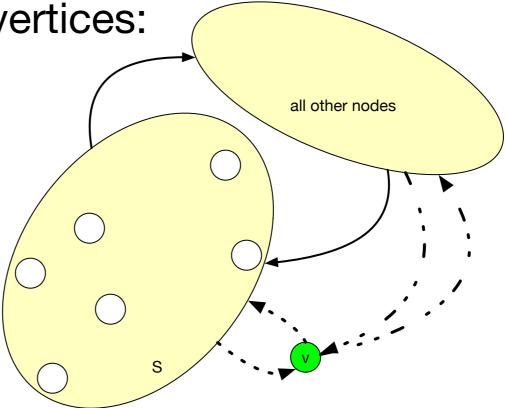
- In Mathematics, a directed graph cannot have simultaneously an edge (u, v) and an edge (v, u)
 - These are called antiparallel edges
- We can get around this by introducing artificial vertices



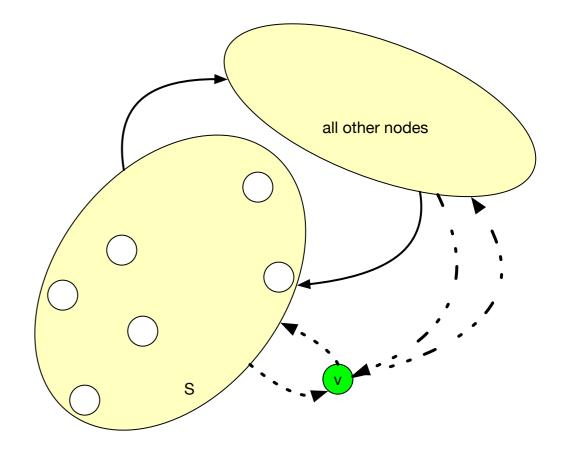
- Family of algorithms based on
 - Residual networks
 - Augmenting paths
 - Cuts (as defined before)

- Inflow is equal to Outflow for any set of vertices (not including source and sink
 - Proof by induction:
 - For one vertex: This is the equilibrium condition

• n vertices to n+1 vertices:



- Let v be a new vertex and form $S' = S \cup \{v\}$. Let
- Inflow and Outflow between S and $\mathbb{C}(S)$ are equal
- Inflow into S' changes by
 - add flow from $\mathbb{C}(S)\setminus\{v\}$ to $\{v\}$
 - subtract flow from $\{v\}$ to S
- Outflow from S' changes by
 - subtract flow from S to {v}
 - add flow from $\mathbb{C}(S)\setminus\{v\}$ to $\{v\}$



• Because of equilibrium in v, the difference is zero

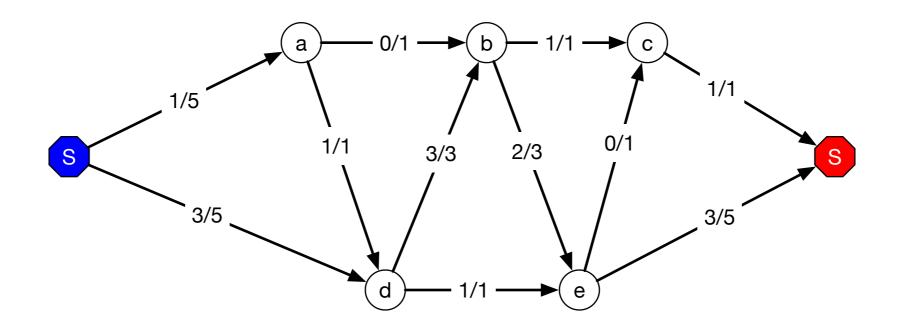
- Corollary: Outflow from source = Inflow to sink
- Introduce a dummy link between sink and source:
 - Flow has now equilibrium for all set of vertices

- Cuts: Partition of the vertex set with source in one and sink in the other partition set
- For a cut, we can calculate the net-flow:
 - Sum of the individual flows crossing the cut away from source towards the sink
- Corollary:
 - The maximum flow is equal to the minimum flow crossing a cut

• Given a cut S,T. Define c(S,T) to be the sum of the capacities of edges from S to T

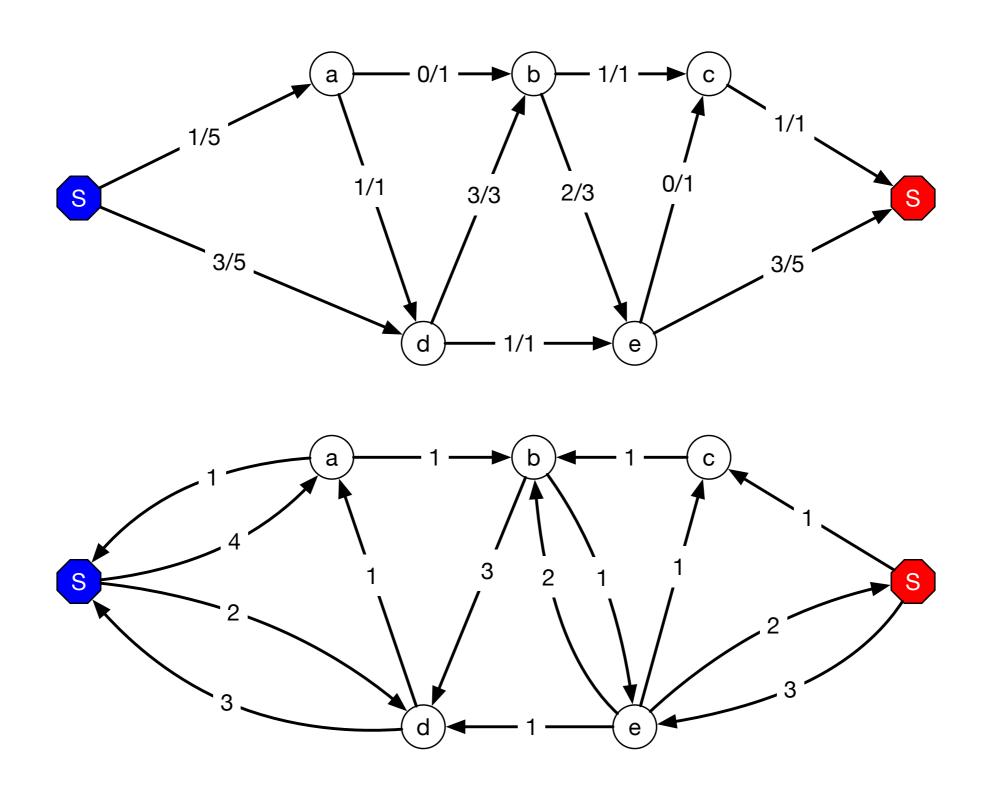
- Max-flow min-cut theorem:
 - The following is equivalent
 - f is a maximum flow
 - The residual network contains no augmenting paths
 - |f| = c(S, T) for some cut (S, T)

- Residual Networks Motivating Example:
 - Check that the flow is balanced at all nodes

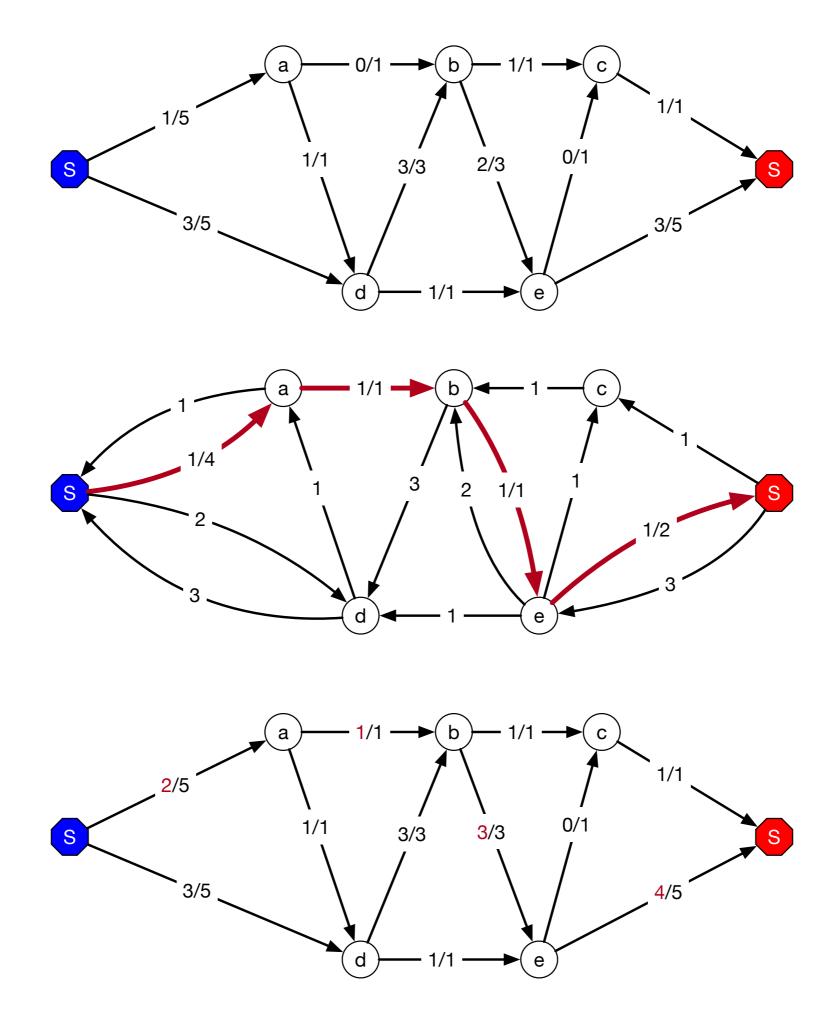


- The residual network captures how this flow can be changed
 - If there is a flow f(u, v) < c(u, v), we can:
 - Augment the flow by up to c(u, v) f(u, v)
 - Decrement the flow by up to f(u, v)
 - Therefore:
 - Create an edge c'(u, v) = c(u, v) f(u, v)
 - Create an edge c'(v, u) = f(u, v)

- Residual network
 - If a flow is not at capacity in an edge, we have a "residual" capacity
 - If a flow through an edge is positive, we can reduce this flow



- Because we have anti-parallel edges, the residual network is not a graph in the sense of Mathematics
- But we can still treat this as a flow network
- Assume we can find a flow from source to sink in the residual graph
 - This is called an <u>augmenting</u> path
- We can then <u>add</u> the augmenting path flow to the previous flow
- Which carries more from sink to source



- More formally: let f' be a flow in the residual network
- Then define a new flow for edges (u, v)
 - $(f \uparrow f')(u, v) = f(u, v) + f'(u, v) f'(v, u)$

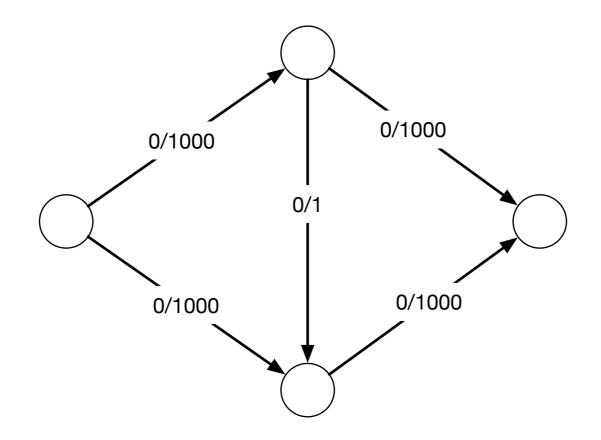
 When we "push" a flow along the reverse of an edge, then we have a "cancellation"

- Lemma: $f \uparrow f'$ is a flow
 - Capacity constraint
 - Follows from definition of a residual network
 - Inflow = Outflow follows from both being flows
- Lemma: $f \uparrow f'$ has a larger flow from source to sink

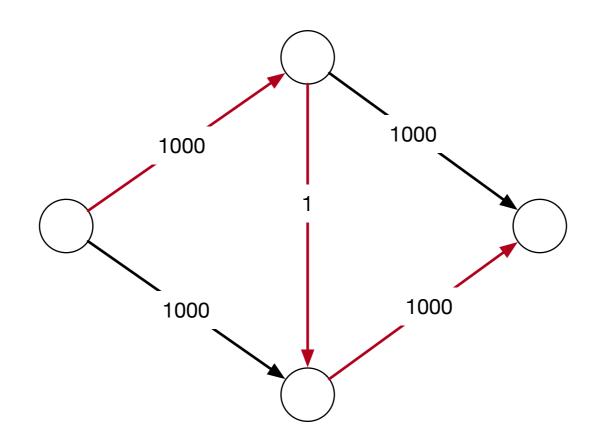
- Ford Fulkerson algorithms:
 - 1. Create a zero flow
 - 2. While possible: Find a path from source to sink in the residual network.
 - 3. Calculate the minimum flow on the path
 - 4. Adjust the flow along the path

- Run-time for Ford Fulkerson algorithms depend on the way to find the path in the residual network
 - Example: There is no guarantee that we approach the maximum flow while we continue to improve
- Assume that flow capacities are integers
- For path detection: use Breadth First Search in the residual network
 - Costs time $\Theta(|E| + |V|)$ to detect a path
 - Improves flow from source to sink by 1
 - Total time is $|f| \cdot \Theta(|E| + |V|)$

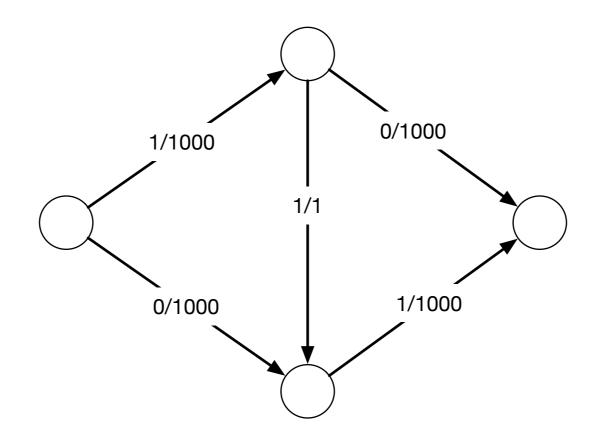
Classic Example how Ford Fulkerson can be slow



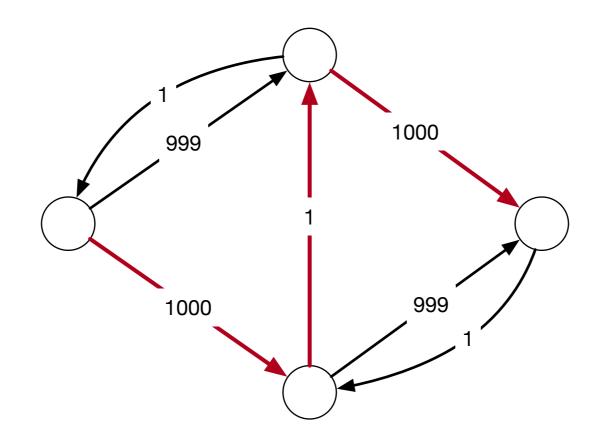
- Example
 - Path in the residual network



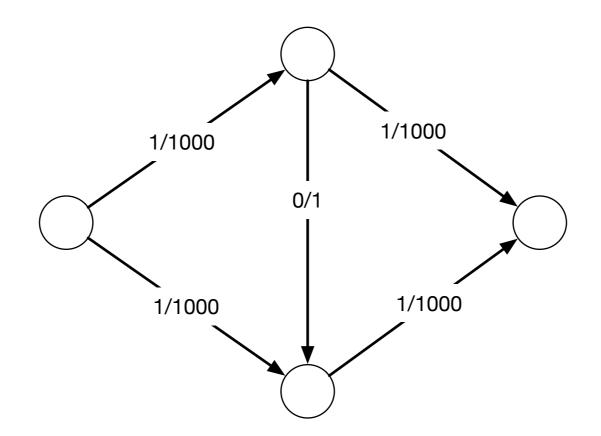
- Example
 - becomes flow



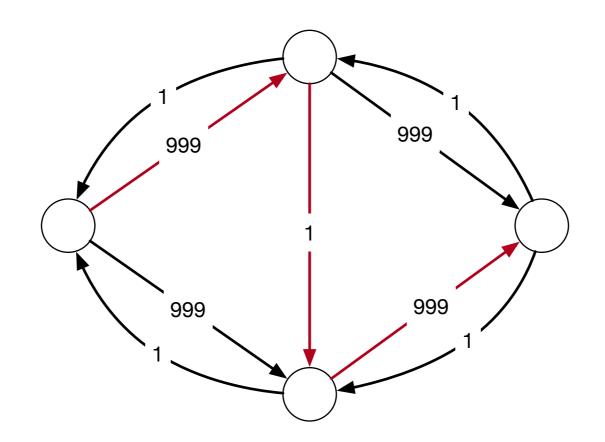
- Example
 - Residual network still has a path



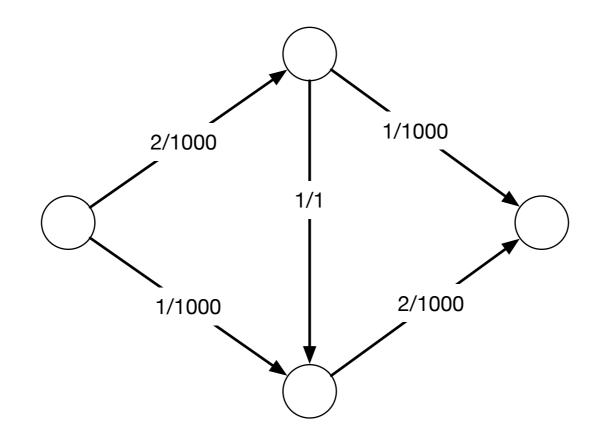
- Example
 - Gives an increased flow:



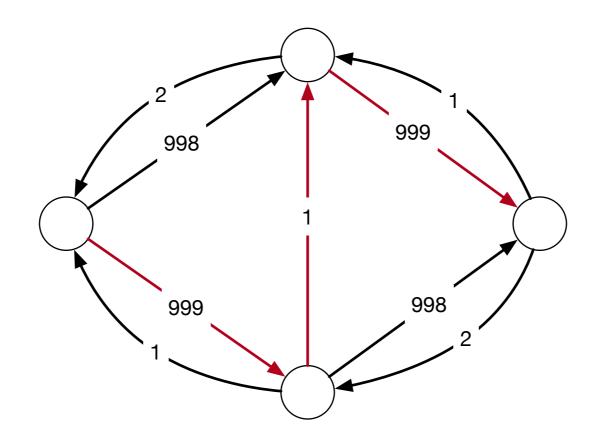
- Example:
 - Residual network has a path



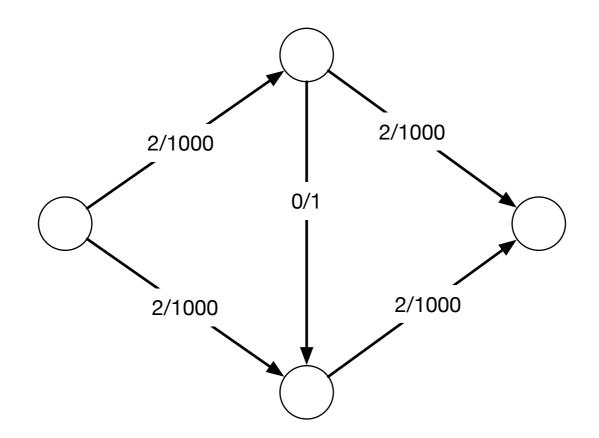
- Example
 - Increased flow



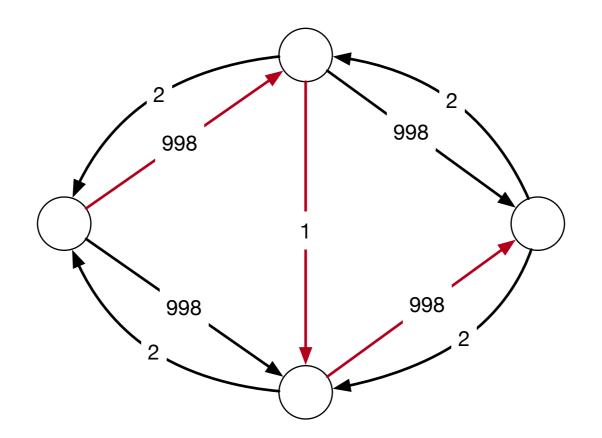
- Example
 - Residual Network



Example

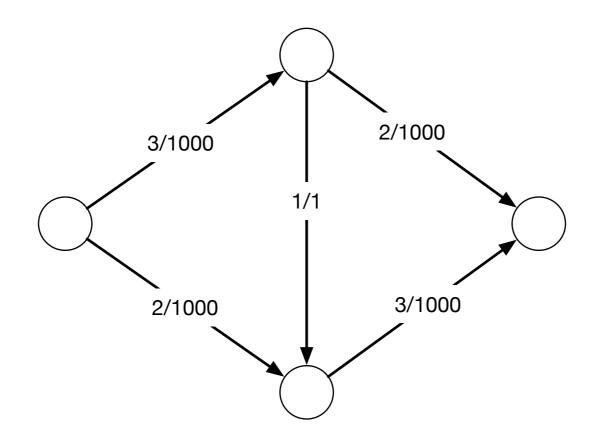


Example



Ford Fulkerson

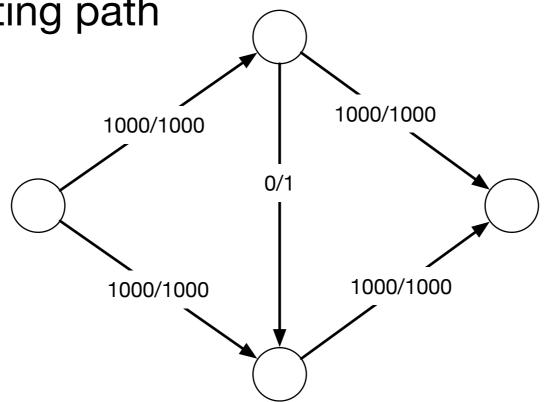
Example

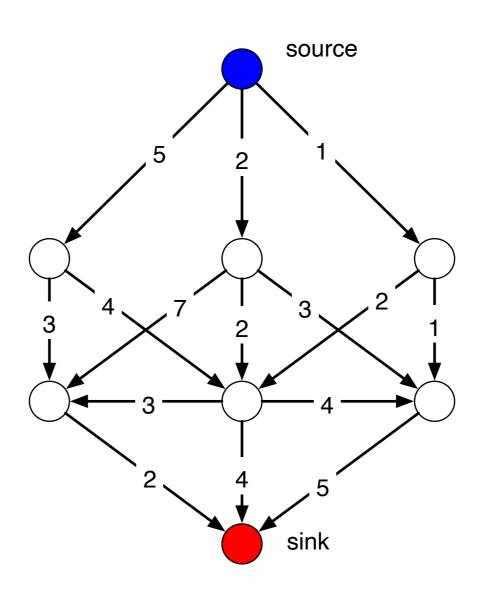


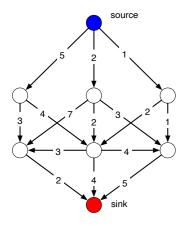
Ford Fulkerson

- Example:
 - It takes 2000 steps to go to the optimal flow

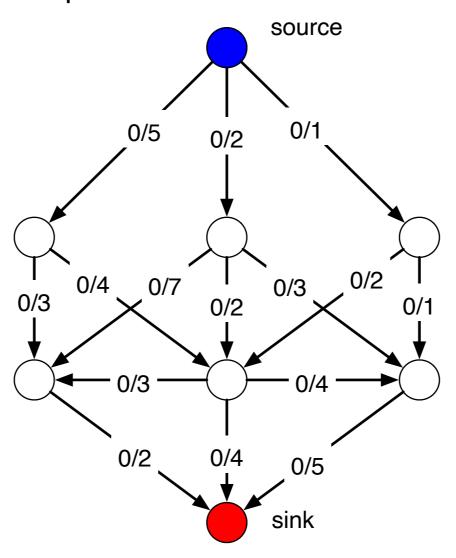
Because we were unlucky in selecting the augmenting path

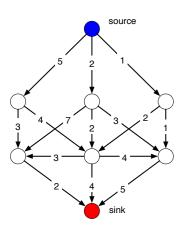




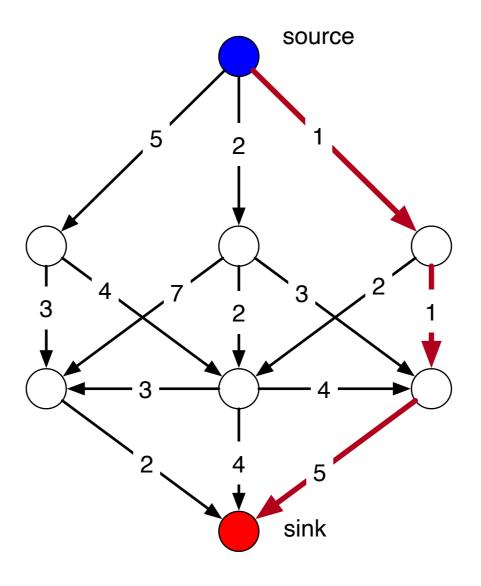


Step 1: Initialize flow to 0

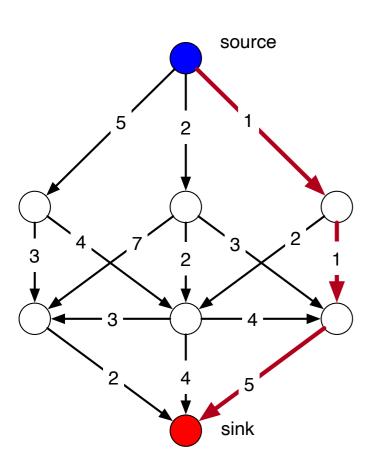




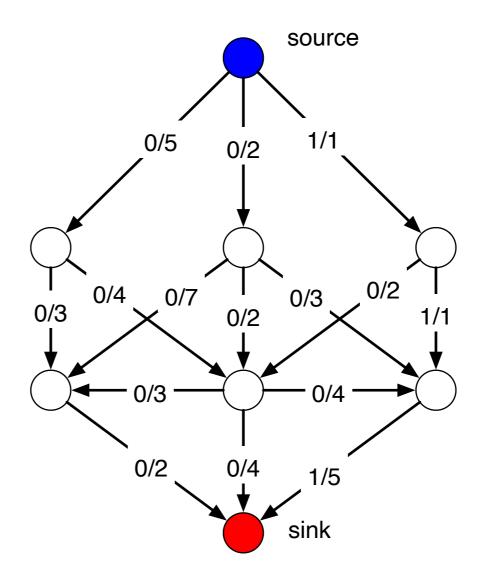
Calculate the residual graph and find a path from source to sink

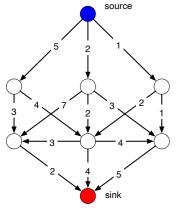




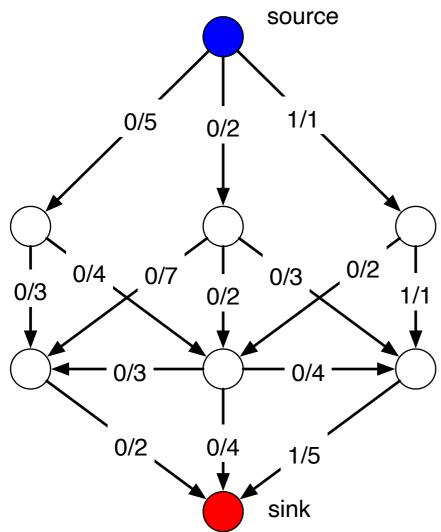


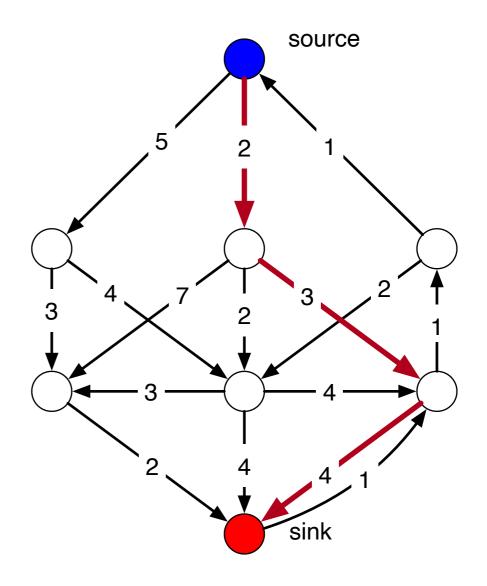
Add the residual flow to the network

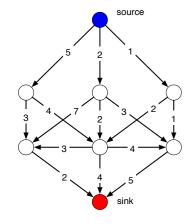


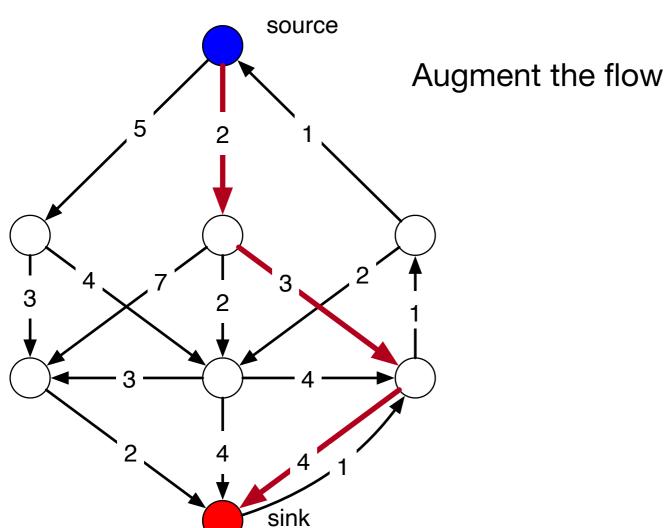


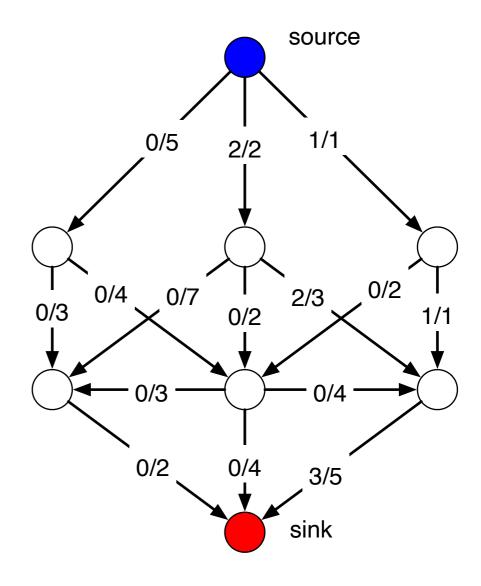
Calculate the residual graph and find a path from source to sink

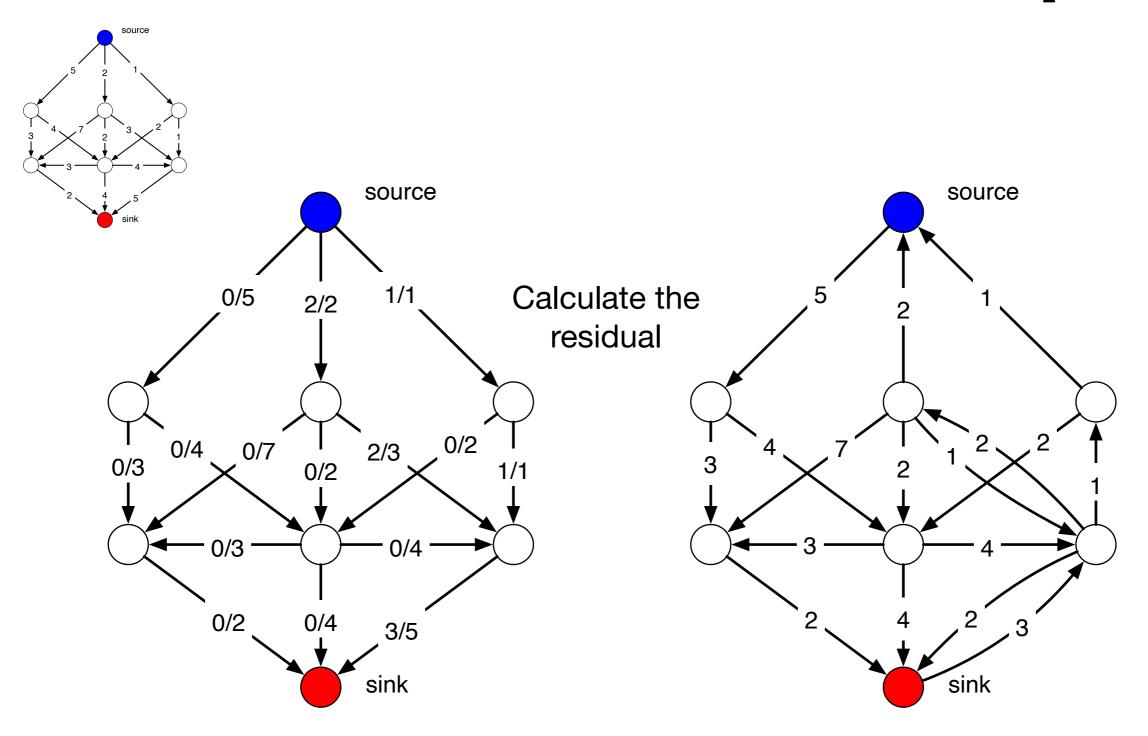


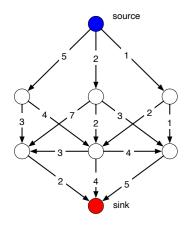




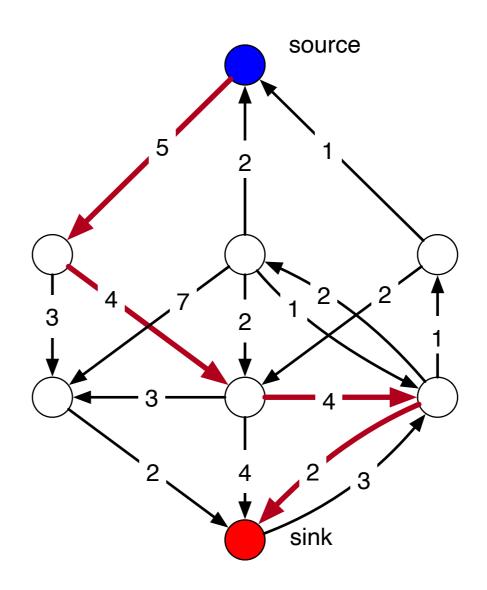


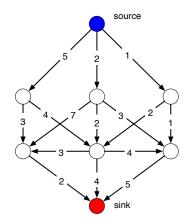




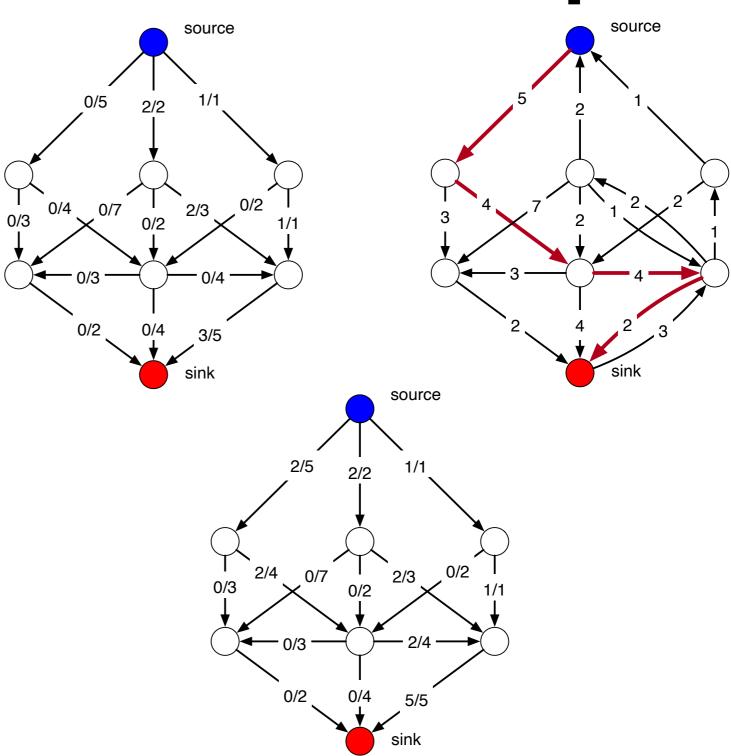


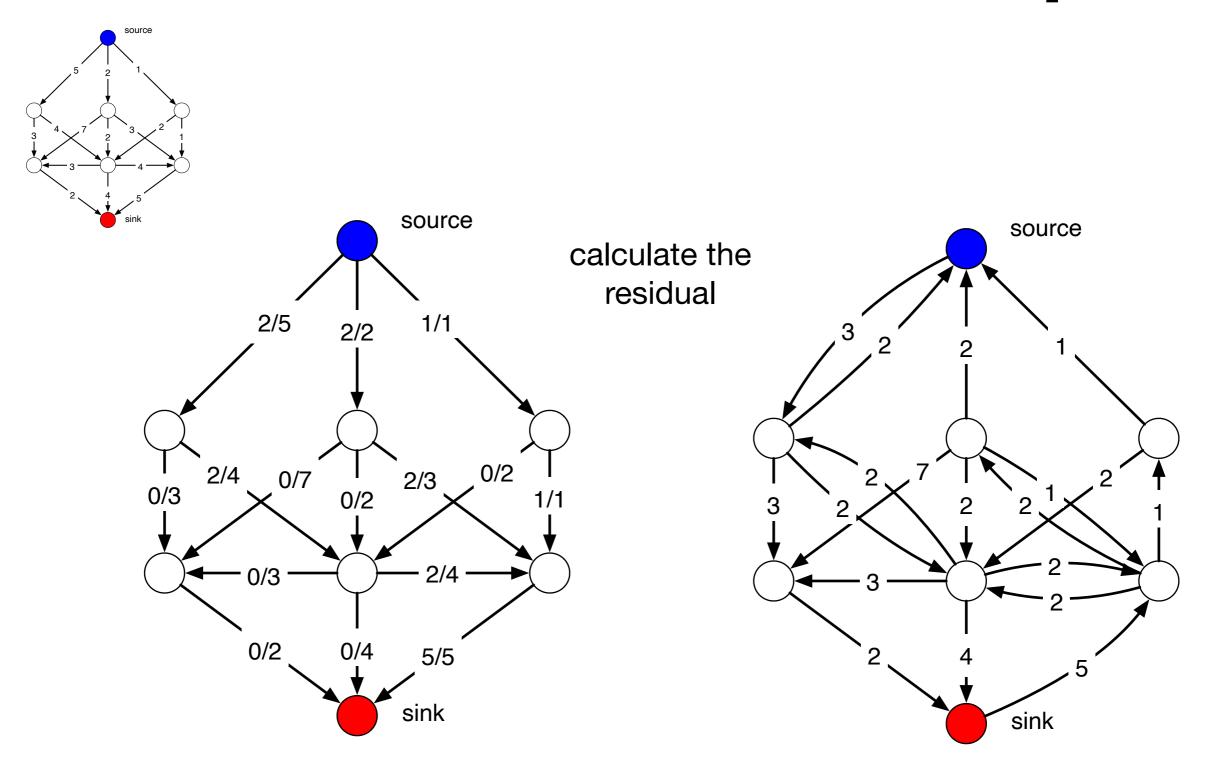
Find a path from source to sink

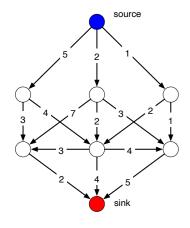




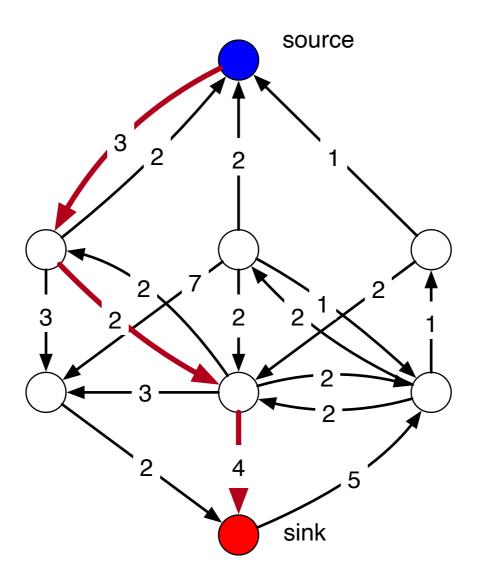
Augment the flow

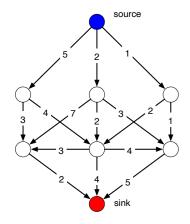


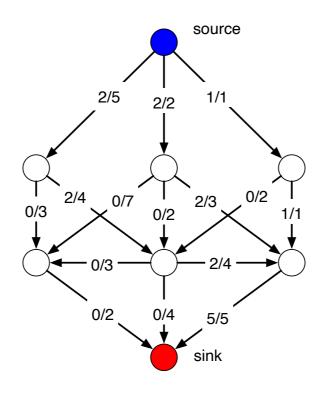


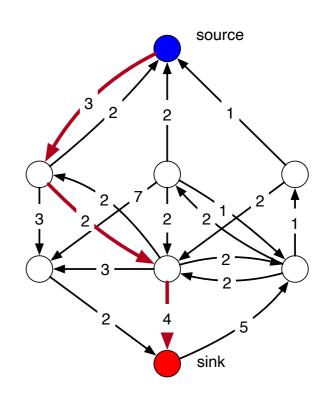


Find a path in the residual from source to sink

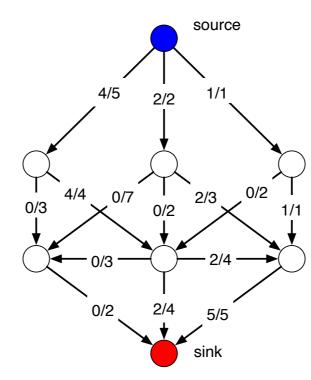


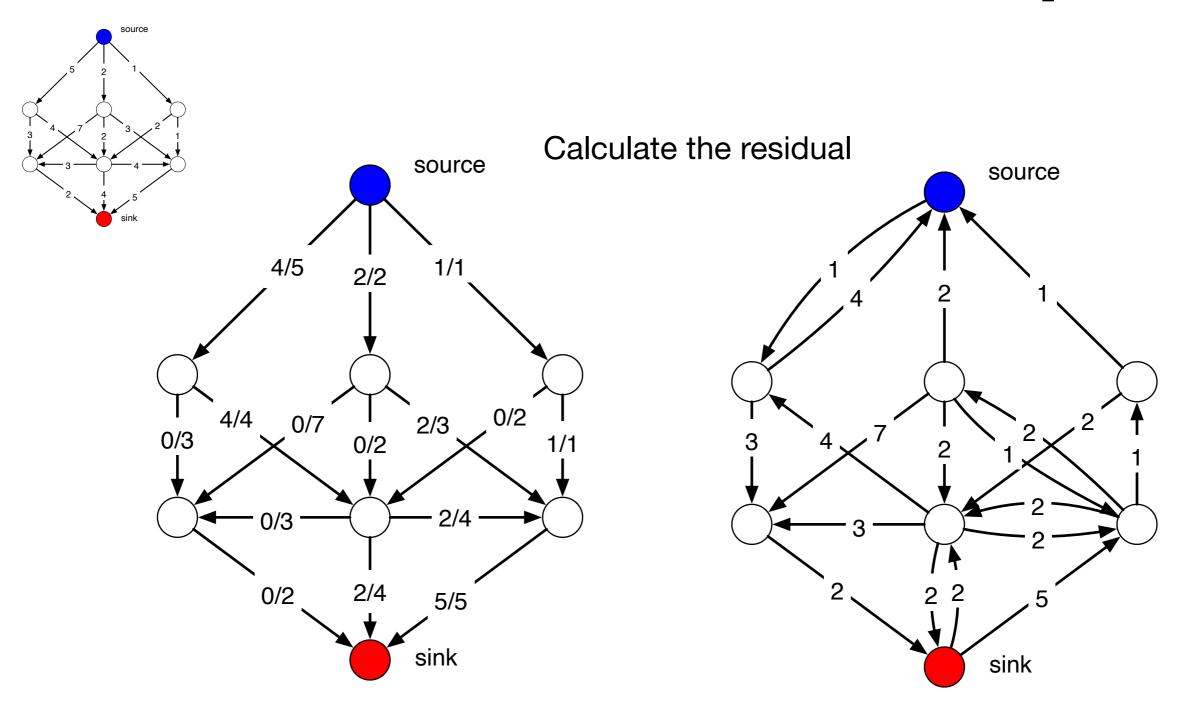


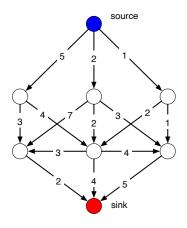




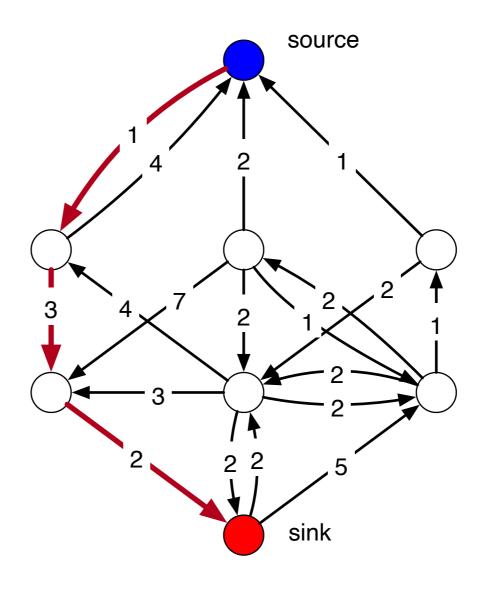
Augment the current flow along the path

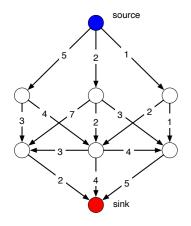


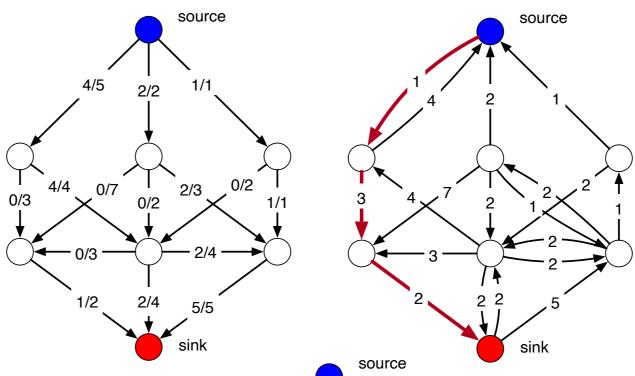




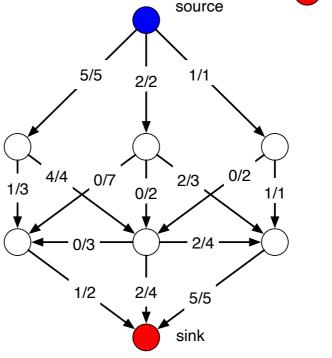
Find a path from source to sink

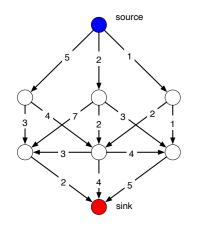




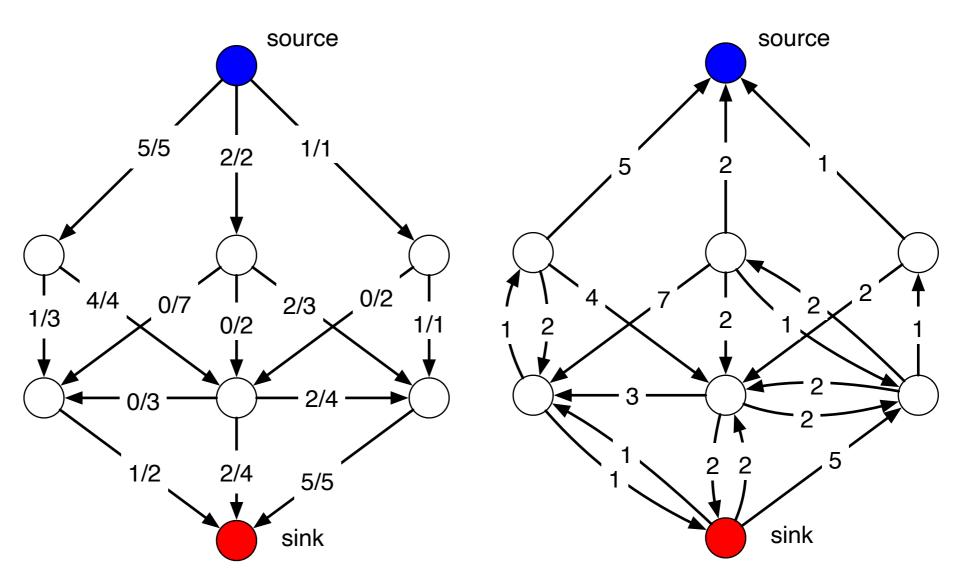


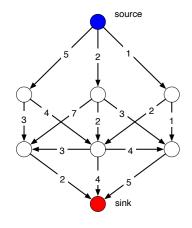
Augment the current flow

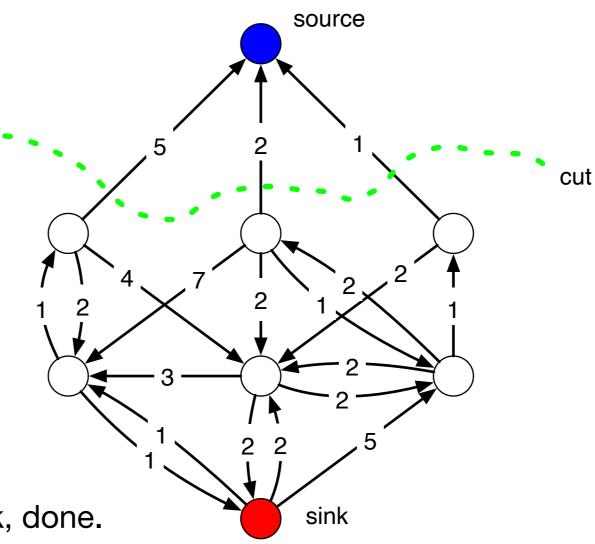




Calculate the residual







No path from source to sink, done.

Edmonds Karp Algorithm

- Use Ford Fulkerson
 - Determine an augmenting path use BFS
 - Favoring shortest number of edges in a path

• Can show: total number of flow augmentations is $O(|V|\cdot|E|)$